
MIT International Journal of Computer Science and Information Technology, Vol. 10, No. 1, January 2021 ISSN 2230-7621

7

GESTURE RECOGNITION

Ritik Gupta, Rishabh Chauhan, Rishav Chaba, Ritish Varshney, Praveen Saini

Department of Computer Science and Engineering

Moradabad Institute of Technology, Moradabad

Abstract:
Gesture Recognition is a type of perceptual computing user

interface that allows computers to capture and interpret human

gestures as commands. The general definition of gesture

recognition is the ability of a computer to understand gestures

and execute commands based on those gestures. [1] The main

objective is to develop a Machine Learning based system that

uses gestures to perform various functions. For this project, we

are aiming to build a system which can be trained to recognize

the gestures we make and perform the dedicated function we

decide for it. Gestures, to the system, will be taken from Arduino

with Accelerometer through micro USB cable.

Keyword: Gesture Recognition, Machine Learning, Arduino,

Accelerometer, micro USB cable, gestures, commands, interpret,

system.

I. Introduction

Gesture recognition, Arduino based, from

accelerometer data is an emerging technique for gesture-

based interaction, which suits well the requirements in

ubiquitous computing environments. With the rapid

development of the MEMS (Micro Electrical Mechanical

System) technology, people can wear/carry one or more

accelerometer-equipped devices in daily life. For this

project, we aim to build a system which can be trained to

recognize the gestures we make and perform the dedicated

function we decide for it. We’ll be demonstrating this by

training the system to recognize letters by the gestures we

make in the air. To build this system, we’ll be using an

Arduino Board interfaced with an accelerometer. The

device can be attached to the user’s hand. The

accelerometer will provide input to the microcontroller

about the hand’s (which is being used to make the gesture)

coordinates. The algorithm will pick up this data and

maintain a database to recognize each gesture differently.

Once we train the system with the same gesture multiple

times it will gather enough data to have an estimate of

what the gesture should look like. This gesture can then be

assigned to perform a task on the computer.

The accelerometer can collect hand orientation and

acceleration, 3-axis acceleration of users’ hand motion.

Now most accelerometers can capture three-axis

acceleration data, i.e. 3D accelerometers, which convey

more motion information than 2D accelerometers. The

accelerometer is embedded into Arduino. Here, we use

Arduino as an input device for experimental set-up and

performance evaluation. To recognize a gesture from the

captured data, we have applied many machine learning

algorithms. The most accurate and efficient algorithm that

we found is Support Vector Machine (SVM) to classify

the data. Based on the SVM algorithm, new gestures can

be classified and the corresponding symbol can be

recognized. The classification algorithm SVM is applied

using a python script in the project using Arduino’s serial

monitor. Then, the symbol, which can be uppercase

English letter or lower-case English letter or numeric, can

be typed at the current focusing mouse pointer in the

editor. Other operations can be performed like mouse

operations, media operations, browser operations etc. also

but this is done by only Arduino Remote itself. [2]

II. Methodology

STEP 1: Connect the accelerometer

In this step, we are connecting the accelerometer with

Arduino. To do this, first solder male header pins onto the

breakout board, if you haven't done so already. Then

you'll wire up the accelerometer to the Arduino. As a

shortcut, you can plug the accelerometer breakout directly

into the analog input pins of the Arduino (or other

Arduino with the same form factor). Then in the Arduino

code, you can configure the appropriate pins to provide

power and ground to the accelerometer. Alternatively, you

can plug your accelerometer into a breadboard and wire it

to the Arduino, connecting its power and ground pins to

the 5V and GND pins of the Arduino, and its X-, Y-, and

Z-axis pins to three analog inputs of the Arduino board.

STEP 2: Upload the Arduino code

An Arduino program is created to read data from the

accelerometer and send it over serial (USB) to the

computer. First, check that the pins specified in the

Arduino program match the way you've wired up your

accelerometer (e.g. that xpin corresponds to the analog

input pin that's connected to the X-axis pin of your

accelerometer). Then select the appropriate board and

serial port from the Arduino tools menu and upload the

Arduino sketch.

STEP 3: Check for data in the serial monitor

Open the Arduino serial monitor, set it to 38400 baud,

and check that we're getting the appropriate accelerometer

data from your Arduino or not. On the serial monitor, the

data coming from the accelerometer to the Arduino can be

seen like that:

START -2556 4296 22696 696 666 -1446 END

START -2904 2448 19832 2687 12345 -4298 END

START -1656 -1520 8952 -9006 2312 -4080 END

START -3552 -464 10844 8037 -6754 -529 END

START -3200 1044 29152 744 -9458 -3292 END

START -856 -4464 24000 -4321 7144 3458 END

First 3 columns are Acx, Acy, Acz, all axis data of the

accelerometer for speed. And the next 3 columns are Gx,

Gy, Gz, all axis data of gyroscope for orientation. On

moving the arduino, the data is changing rapidly which

shows that the connection of the accelerometer with the

Arduino has been done correctly. Be sure to close the

serial monitor before continuing, as otherwise they'll

MIT International Journal of Computer Science and Information Technology, Vol. 10, No. 1, January 2021 ISSN 2230-7621

8

block the python application from talking to your

Arduino.

STEP 4: Collecting the sample data for training SVM

To collect the sample data, we use a button, connected

with Arduino, for capturing the data from accelerometer to

python script. On click and hold the button, the sample

data starts collecting from the accelerometer and saved in

the specific folder using python script. We use classes for

collecting sample data for training SVM, because SVM

needs classes for each training data, and we use 4-5

classes and for each class we record 10-15 sample data.

The recorded sample data is saved under a .txt file, named

as:

a_sample_b_c.txt, where

a = symbol,

b = class no

c = sample data no for that class

Be sure to record the example gestures with the

accelerometer in the same configuration as it will be later,

when you want the system to recognize the gestures. For

instance, you might hold the accelerometer in your hand

with a particular orientation, or attach it to an object that

you'll hold with a particular orientation.

A good sample contains the data corresponding to the

whole gesture, but without much additional baseline data

at either the start or the end. That is, the sample should

start and end with a short period of relatively flat lines,

neither too long nor missing altogether. Each additional

example you record is another sample that the machine

learning algorithm can match against when it's

recognizing gestures. That means that if you want the

system to recognize different variations of a gesture (e.g.

the different ways in which it is made by different people),

it may help to record samples of each variation. On the

other hand, if you have bad samples, they may confuse the

system; more samples aren’t necessarily better. In general,

we've had good luck recording somewhere around 5 to 10

samples for each gesture, although again, the quality of

the individual samples is more important than their

quantity. If you don't like a sample (e.g. because you

pressed the key at the wrong time and missed the data

corresponding to part of the gesture), you can delete it

only by going to the appropriate file location in the

computer system and delete the file manually. So, try to

record the sample data carefully. If you recorded a sample

in the wrong class, you can re-label the file name.

STEP 5: Train Machine learning model

Once you've recorded a few example gestures, you can

train the machine learning model, Support vector machine,

to recognize those gestures from your examples. The

training can be done by executing the python script

manually in the background. The message "training

successful" appears at the bottom of the console window

in which the python script is executing. The console

window also shows the accuracy score (in percentage) of

the SVM model.

The system may not work well the first time you train it.

It's helpful to train and test the system often as you record

your example gestures, so you can get a sense of how it's

behaving. In particular, if the system isn't recognizing

gestures you think it should, you may want to record

additional examples of that gesture. If the system is

recognizing gestures when it shouldn't, you may want to

delete or trim examples that look different than the others.

STEP 6: Making Prediction

Once the Machine learning model, SVM, is trained

successfully, then it’s time to recognize the new gesture

symbol with the help of trained SVM model. For this, we

have created a simple website which acts as a GUI for

many operations performed by the project. After selecting

the appropriate mode from the website, the mode is started

to predict the new gesture symbol. To predict, the button

embedded with the Arduino is clicked and held till the

gesture recording by the Arduino. After leaving the

button, the python script collects the new gesture data and

then SVM model takes that data for the prediction. After

successful prediction done by SVM, the corresponding

symbol for the gesture is displayed at the current mouse

cursor. [3] [4]

Fig 1: Flow Chart of Methodology

III. MODULES

There are some Modules which can be performed with

the help of this proposed system:

1. English Typing A-Z

2. English Typing a-z

3. Numeric Typing 0-9

4. Mouse Operation

5. Media Controlling

6. Web Browser Controlling

7. Presentation Controlling

8. Window Task Switching

IV. Support Vector Machine (SVM)

Support Vector Machine (SVM) is a supervised

machine learning algorithm capable of performing

MIT International Journal of Computer Science and Information Technology, Vol. 10, No. 1, January 2021 ISSN 2230-7621

9

classification, regression and even outlier detection. The

linear SVM classifier works by drawing a straight line

between two classes. All the data points that fall on one

side of the line will be labelled as one class and all the

points that fall on the other side will be labelled as the

second. Sounds simple enough, but there’s an infinite

amount of lines to choose from. How do we know which

line will do the best job of classifying the data? This is

where the LSVM algorithm comes into play. The LSVM

algorithm will select a line that not only separates the two

classes but stays as far away from the closest samples as

possible. In fact, the “support vector” in “support vector

machine” refers to two position vectors drawn from the

origin to the points which dictate the decision boundary.

Fig 2: Working of Support Vector Machine (SVM)

In this, the dataset is split into training and testing set,

the training set is used to train the system (i.e. learn the

system) to recognize different patterns of categories, the

testing set is used to evaluate the system, the process of

categorization depends on the algorithm used. The choice

of which specific learning algorithm we should use is a

critical step. Once we complete the preliminary testing

and if achieved as to be satisfactory, the classifier that

maps the unlabelled instances into classes is available for

the routine to use. The classifier’s evaluation is most often

based on prediction accuracy (the percentage of correct

prediction divided by the total number of predictions).

There are three techniques used to calculate a classifier’s

accuracy which is essential. One technique is to split all

the training set by using two-thirds of it for training and

the other third of it for estimating their performance. In

cross-validation, the training set is divided into mutually

exclusive, equal- sized subsets and for each subset the

classifier is individually trained on the U of other subsets.

[5]

V. Conclusion

This paper portrays a framework that has the ability to

identify the character drawn through a gesture in air with

the assistance of an input device. The strategy proposed

here effectively made an acknowledgment framework,

that can perceive which motion is performed by the user

and precisely play out the usefulness related to it. Also,

we conducted evaluation comparing the performance of

machine learning algorithms on classifying gestures. This

study uses accelerometer-based datasets as the source of

signals and also sci-kit learning. The variables from

calculating feature distances we used as machine learning

input for the learning process. The result of discriminant

analysis of the data shows accuracy of classifying the

data, while the machine learning algorithms perform well.

The peak accuracy of SVM gets into 90.69%, for KNN it

reaches 88.89%. The device is capable of successfully

reading gestures in air and accurately performing

functions as described throughout.

VI. Future Scope

The present framework gives best outcomes in a plain

foundation and henceforth puts certain imperatives on the

user for effective working. The future work will

incorporate usage of extra signals which will empower the

client to perform more capacities easily. Moreover,

foundation subtraction calculation can be utilized for a

more compelling execution. The proposed framework

utilizes just the correct hand to perform signals.

Henceforth, upgrade of the procedure proposed, is

conceivable utilizing the two hands for performing diverse

PC activities. Examinations should be done on a bigger

scale with the goal that outcomes can be more exact.

There are two most important future work which can

be done to improve this system:

1. ESP 8266 Wi-Fi Module

2. Hybrid Machine Learning Model

1. ESP 8266 Wi-Fi Module:

The Module can be used to transfer the Gesture data from

Arduino to the system wirelessly. This improves the

system range i.e. User can use this proposed system from

the large distance also within the given range of W-Fi

module.

2. Hybrid Machine Learning Model:

In this, till now, Only Support Vector Machine (SVM)

Machine Learning Model is used to classify the Gesture

data with an accuracy % of 91.23. But here, an

improvement can be done in selecting Machine learning

model. The hybrid Model based on the combination of k-

nearest neighbors (kNN) and Support Vector Machine

(SVM). This combined Model can give the accuracy of

94% which is 3% more than that of previous model.

REFERENCES

[1] S. Schechter, "What is gesture recognition? Gesture

recognition defined," 24 March 2014. [Online]. Available:

https://www.marxentlabs.com/what-is-gesture-recognition-

defined/#:~:text=Gesture%20recognition%20is%20a%20ty

pe,commands%20based%20on%20those%20gestures..

[Accessed 07 June 2020].

[2] wikipedia, "Gesture recognition," 06 June 2020. [Online].

Available:https://en.wikipedia.org/wiki/Gesture_recognitio

n. [Accessed 07 June 2020].

[3] J. Wu, G. Pan, D. Zhang, G. Qi and S. Li, "Gesture

Recognition with a 3-D Accelerometer," in Department of

Computer Science Zhejiang University, Hangzhou, China,

2009.

[4] Mellis, "Gesture Recognition Using Accelerometer and

ESP," 20 May 2016. [Online]. Available:

MIT International Journal of Computer Science and Information Technology, Vol. 10, No. 1, January 2021 ISSN 2230-7621

10

https://www.hackster.io/mellis/gesture-recognition-using-

accelerometer-and-esp-71faa1. [Accessed 07 June 2020].

[5] javaTpoint, "Support Vector Machine Algorithm,"

JavaTPoint, 16 June 2018. [Online]. Available:

https://www.javatpoint.com/machine-learning-support-

vector-machine-algorithm. [Accessed 07 June 2020].

