

MIT International Journal of Computer Science and Information Technology, Vol. 7, No. 1, January 2018 ISSN 2230-7621

1

IMAGE TEXT TRANSLATION

Vikas Bhatnagar, Gargi Dhyani, Himanshu Yadav, Harshita Gupta

Department of Computer Science and Engineering

Moradabad Institute of Technology Moradabad, India

Abstract – Influenced by the well-known translation application

„Google Lens‟ that is able to recognize the text captured by a mobile

phone camera, translate the text, and display the translation result

back onto the screen of the mobile phone. Our text extraction and

recognition algorithm has a correct-recognition rate that is greater

than 95% on character level. In this report, we demonstrate the

system flow, the text detection algorithm and detailed experiment

result.

Keywords- Android, Image Translation, OCR, Natural Language

Processing, Tesseract.

I. INTRODUCTION

The inspiration of a real time text translation mobile application

provide help to the tourist to remove the language barrier. The

application we developed enable the users to navigate in a native

language environment. Our mobile application helps the user to get

text translate as faster and easier as a button click Smartphone

camera captures the text and returns the translated results as per user

request in the real world.

The application system we developed generally include automatic

text detection, OCR text language detection, correction and text

translation. Presently, the current version of our application is used

to translation English to Hindi, Urdu, Bengali, Telugu and Tamil

and vice versa, but it has some future scope that can be easily be

extended into a much wider range of language sets

A. Prior and Related Work

1) Text Extraction: Text extraction techniques are used because text

embedded in images and videos provides important information.

Many characters of text regions have been summarized and

characterized effectively by several features, e.g. text pixels have

homogeneous color, character strikes form

different texture, etc. Y. Hasan and J. Karam developed a text

extraction algorithm that works morphological edge/gradient

detection Algorithm by Epshtein et-al tackled the problem from

another approach using text stroke transform.

2) OpenCV: OpenCV stands for Open Source Computer Vision. It

is a library of programming functions for real time computer vision.

The library has more than 2000 optimized algorithms and has been

widely used around the world. More than this, android programmers

are able to implement many digital image processing algorithms in

Android phone platform.

3) Optical Character Recognition: OCR, Optical Character

Recognition, is developed to translate scanned images of

handwritten, or printed text into machine-encoded text. OCR

software have been developed to accomplish this technique.

Tesseract, originally developed as a software at Hewlett Packard

between 1985 and 1995, now sponsored by Google, is considered to

be one of the most accurate open source OCR Engine currently

available. It is capable of recognizing text in variety of languages in

a binary image format.

4) Text Correction: The text correction is a necessary step after

OCR text recognition, since the result returned by the OCR engine

is not always correct due to noise in it. This type of errors can be

categorized into a non-word error - which means that the text string

returned by OCR does not correspond to any valid word in a given

word set. Such text correction systems include A spell, and also the

well-known Peter Norvig‟s text correction algorithm.

II. SYSTEM FLOW

In this paper, we propose a text translation algorithm that consists of

following steps:

1) Morphological edge detection

2) Text feature filtering

3) Text region binarization

MIT International Journal of Computer Science and Information Technology, Vol. 7, No. 1, January 2018 ISSN 2230-7621

2

4) Optical character recognition

5) Text correction

6) Text translation

7) Display of the translation

A. Step 1 - Canny Edge Detection

Canny edge detection is a technique to extract useful structural

information from different vision objects and dramatically reduce

the amount of data to be processed. It has been widely applied in

various computer vision systems. Canny has found that the

requirements for the application of edge detection on diverse vision

systems are relatively similar. Thus, an edge detection solution to

address these requirements can be implemented in a wide range of

situations. The general criteria for edge detection include:

1. Detection of edge with low error rate, which means that

the detection should accurately catch as many edges

shown in the image as possible
2. The edge point detected from the operator should

accurately localize on the center of the edge.

3. A given edge in the image should only be marked once,

and where possible, image noise should not create false

edges.

To satisfy these requirements Canny used the calculus of variations

– a technique which finds the function which optimizes a given

functional.

The optimal function in Canny's detector is described by the sum of

four exponential terms, but it can be approximated by the first

derivative of a Gaussian.

Among the edge detection methods developed so far, canny edge

detection algorithm is one of the most strictly defined methods that

provides good and reliable detection. Owing to its optimality to

meet with the three criteria for edge detection and the simplicity of

process for implementation, it became one of the most popular

algorithms for edge detection.

Process of Canny Edge Detection Algorithm:

The Process of Canny edge detection algorithm can be broken down

to 5 different steps:

1. Apply Gaussian filter to smooth the image in order to

remove the noise
2. Find the intensity gradients of the image
3. Apply non-maximum suppression to get rid of spurious

response to edge detection
4. Apply double threshold to determine potential edges

5. Track edge by hysteresis: Finalize the detection of edges

by suppressing all the other edges that are weak and not

connected to strong edges.

B Step 2 - Text Feature Filtering

In order to reduce the number of connected components that have to

be analyzed, a close operation with a 5 by 5 structuring element is

performed to the binary edge image obtained from Step 1. After the

close operation, all connected components of the edge image are

screened with their position, size, and area information. A candidate

of letter should meet a set of constraints in size and shape. In our

algorithm, we select connected components as letter candidates if

the following requirements are met: 1) Width of the bounding box <

0.5 image width 2) Height of the bounding box < 0.3 image height

3) 0.1

< center width of the bounding box < 0.9 4) 0.3 < center height of

the bounding box < 0.7 5) Width vs. height ratio < 10 6) Width of

the bounding box > 10 pixels 7) 0.1 < Connected component filled

area over (width height of the bounding box)

< 0.95 8) Width of the bounding box > 10 pixels 9) 0.1 <

Connected component filled area over (width height of the

bounding box) < 0.95 After the first round filtering, it is expected

that most of the non-letter components would be removed. So, the

majority of the remaining candidates should be letters with the same

font and size. Based on this condition, we calculate the mean height

hm of the bounding box of the remaining components, and remove

any connected component with its height smaller than 0.6hm or

greater than 1.8hm.

C. Step 3 - Text Region Binarization

Each remaining boundary box is used as a mask to the original gray-

scale image. Since each bounding box is relatively small compared

to the size of the entire image, no further adaptive thresholding

method is implemented. Theoretically after this step, only stroked

letters are left as the foreground, 1, and the rest of the image would

go to background 0.

D. Step 4-6 - Text Recognition, Correction, and Translation

Since the project is focused on implementing text extraction on a

mobile phone, we implemented the following three steps - text

recognition, correction and translation on a server with open source

software for simplicity‟s sake. Google‟s open source OCR -

Tesseract is used as the optical text recognition engine. Peter

Norvig‟s algorithm is added to the routine to perform text

correction. Then Google translator is used to translate the text into

Chinese.

E. Step 7- Display of the Translation

The translated text string from Step 6 is sent back to the mobile

device (Android phone) from the server, and then displayed at the

top center region of the screen. A sample text extraction process

flow is shown in Figure 1 below. The final result frame display after

step Figure 4-7 is shown in Figure 2.

MIT International Journal of Computer Science and Information Technology, Vol. 7, No. 1, January 2018 ISSN 2230-7621

3

III. TEST AND RESULTS

The performance of our system is evaluated by the rate of

successful recognition. We decide to use recognition rate rather than

successful translation rate as the criterion of performance, because

the recognition rate more directly measures the successfulness of

the text identification algorithm, whereas the measure of translation

rate can be influenced by the Google translation engine, over which

we have no control. The recognition rate is defined as, the ratio

between the number of successfully recognized letters and the total

number of letters in a test image.

We conducted experiments to evaluate the performance of our

system under different scenarios. The font size, font and means of

display are varied in order to test their effect on the performance of

the system.
Two phrases,” Digital Image Processing” and “Visual Information

Plays an Important Role” are used for the test. The two phrases

contain 44 and 72 letters respectively. We counted the number of

letters recognized from the output of the OCR engine and calculated

the recognition rate.

Fig.1

A. Font

The test phrases were displayed in Arial, Calibri, Times New

Roman and Arial Bold, and their recognition rates were measured.

We did not observe significant difference of the recognition rate

among the four fonts.

B. Font Size:

We used large, medium and small sizes of letters for testing. The

font size of large letters was 40, the size of medium letters was

between 20 and 25, and the size of small letters was between 10 and

15. We fixed the camera lens approximately 30 cm away from the

letters, so that small letters would appear small in the camera frame.

We found significant effect of the

font size on the recognition rate. As shown in the table above, large

text

The Recognition Rate for Text with Large, Medium and Small

Font sizes achieve much higher recognition rate than medium and

small size texts do.

TABLE I:

Font Sizes Large Medium Small

Recg.Rate 0.94 0.83 0.88

(letter)

Recg.Rate 0.83 0.84 0.81

(word)

C. Means of Display

The text was displayed on a computer screen and on a piece of

paper. We tested the recognition performance with both display

methods. As we had expected, the recognition rate of the text

displayed on a computer screen was slightly higher than the result

of the text printed on a piece of paper. This is because computer

screen has higher contrast than paper.

TABLE II:

The Recognition Rate for Text on a Computer Screen and on Paper

Display Computer Screen Paper

Recg.Rate (letter) 0.90 0.87

Recg.Rate (word) 0.82 0.85

We repeated the above experiment after text correction is applied.

The text correction improves the performance by 5% if we measure

how many words are successfully recognized. We summarized our

experimental results in Fig 2..

Fig.2

MIT International Journal of Computer Science and Information Technology, Vol. 7, No. 1, January 2018 ISSN 2230-7621

4

IV. CONCLUSION

We have achieved an Android based application for real-time text

extraction, recognition and translation. The average correct

character-recognition rate is above 95%. From the performance

evaluation of our system, we concluded that our application is very

robust for text written in different languages. Following work needs

to be done in order to drive our application into a defense purpose

application.
Further use of camera pen or touch pen extracts the characters from

the opposite side of the person and then translate it into the user

defined language and recognize what the text is in addition of this

more language translation selections for the user.

REFERENCES

[1] Yassin M.Y.Hasan and Lina J.Karam, Morphological Text

Extraction from Images. IEEE Transaction on Image

Processing Vol.9 No.11, Nov 2000

[2] Nobuyuki Otsu, A threshold selection method from gray-level

histograms. IEEE Trans.Sys.,Man., Cyber 9

[3] http://code.google.com/p/tesseract-ocr/

[4] http://norvig.com/spell-correct.html

[5] http://austingulati.com/2009/07/google-translate-php-api/

[6] Farshad Ghazizadeh, Optical Character Recognition. US

Patent: 5,007,809.

[7] Huiping Li, David Doermann and Omid Kia, Automatic Text

Detection and Tracking in Digital Video. IEEE Transaction on

Image Processing Vol. 9 No. 1, Jan 2000

