Moradabad Institute of Technology
Moradabad

Iy Puennt OF Eelfene

LAB MANUAL

DESIGN AND ANALYSIS OF ALGORITHM
(RCS 552)
Session: 2019-2020

prepared by-
Mr. Manish Gupta
Ms. Neha Gupta

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
MORADABAD INSTITUTE OF TECHNOLOGY
MIT GROUP OF INSTITUTIONS
MORADABAD - 244001

Course Evaluation Scheme SESSION-2019-2020
SEM- 5
In Pursuit of Excellence
B. Tech. (CSE\CSIT)
FIFTH SEMESTER ‘
. Theory/ | Sessional
st . ¢ s Lab | Assig Credi
No. Subject Code Subject Name _ L-T-P (ESE) 'rtes WAL Total ¢
Marks .
1 RASS501 MANEGERIAL ECONOMICS 3—-0--0170 20 [10 100 {3
‘ RASS502/ INDUSTRIAL SOCIOOLOGY)
2 | RUCS501 /CYBER SECURITY 3—--0---0 | 70 20 {10 100 |3
3 | RCS-501 Database Management Systems 3--0-—-0{ 70 20 (10 100 |3
4 | RCS-502 Design and Analysis of Algorithm 3—-1--0]70 20 |10 100 |4
5 | RCS-503 Principles of Programming Languages | 3---0---0 | 70 20 |10 100 (3
6 CS-Elective-1 { DEPTT ELECTIVE COURSE-1 3---1---0 | 70 20 10 100 4
Z_ I RCS:551 | Database Management Systems Lab 0--0-—-2 | 50 = 20 100 []
8 RCS-552 Desi&gand Analysis of Algorithm Lab | 0—--0~-2 | 50 - 50 100 1
Principles of Programnung Languages
9 | RCS-553 Lab 0---0—-2 | 50 - 50 100 |1
10 | RCS-554 Web Technologies Lab 0—-0--2 | 50 - 50 100 |1
TOTAL 1000 | 24

Course Outcome of Practical SESSION-2019-2020

SEM- 5"
In Pursuit of Excellence
At the end of course, Students will be able to :
Course Congnitive
Code CO Course Outcomes(COs) Levels
CO1 | RCS552.1 | Implement algorithm to solve problems by iterative approach. Understand
Implement algorithm to solve problems by divide and conquer
CO2 | RCS552.2 | approach Apply
Implement algorithm to solve problems by Greedy algorithm
RCS552 | CO3 | RCS552.3 | approach. Apply
Implement algorithm to solve problems by Dynamic programming,
CO4 | RCS552.4 | backtracking, branch and bound approach. Apply
Implement algorithm to solve problems by branch and bound
COs | RCS552.5 | approach. Apply |

CO-PO Mapping

go:rse co po1 | P02 | PO3 | PO4 | POS | PO6 | PO7| PO8 | PO9 | PO10 | POLL | POI2
ode
CO1 | RCS552.1 3 1 2 2 1 1 3
CO2 | RCS552.2 3 1 2 2 i1 1 2
RCS 552 CO3 | RCS552.3 3 1 2 p 1 1 2
CO4 | RCS552.4 3 1 2 2 1 1 2
CO5 | RCS552.5 3 1 2 2 1 1 2
CO-PSO Mapping
vanee co PSO1 PSO2
Code
co 3 3
1 RCS 552.1
co 3 3
2 RCS 552.2
Cco 43 3
RCS 552 3 RCS 552.3
CcO 3 3
4 | RCS552.4
CcO 3 3
5 | RCS552.5 B 9
\
N\ I

= b\ \
Dr. Somesh Kumar
Prof. & Head, CSE
Moradabad institute of Technology
Moradabad-244501

Course Syllabus as per University | SESSION-2019-2020

SEM-5"

In Pursuit of Excellence

RCS-552 Design and Analysis of Algorithm Lab

List of Experiments

1. Program for Recursive Binary & Linear Search.

2. Program for Heap Sort.

3. Program for Merge Sort.

4. Program for Selection Sort.

5. Program for Insertion Sort.

6. Program for Quick Sort.

7. Knapsack Problem using Greedy Solution

8. Perform Travelling Salesman Problem

9. Find Minimum Spanning Tree using Kruskal’s Algorithm
10. Implement N Queen Problem using Backtracking

1

\ N/

Dr. Sorfiesh Kumar
Prof. & Head, CSE
Moradabad Institute of Technology
N‘aoradabad-244001

List of Experiment with SESSION-2019-2020
Enhancement by the Faculty Member

In Pursuit of Excellence

RCS-552 Design and Analysfs of Algorithm Lab
Pre-requisites:

The student should have basic knowledge of programming skills.

List of Experiments

Program for Recursive Binary & Linear Search.

Program for Bubble Sort (Beyond syllabus)

Program for Heap Sort.

Program for Merge Sort.

Program for Selection Sort.

Program for Insertion Sort.

Program for Quick Sort.

Program for Counting Sort (Beyond syllabus)

Program for Radix Sort (Beyond syllabus)
. Program for Bucket Sort (Beyond syllabus)
. Program for Shell Sort (Beyond syllabus)
. Knapsack Problem using Greedy Solution (0/1 knapsack)
. Perform Travelling Salesman Problem
. Find Minimum Spanning Tree using Kruskal’s Algorithm
. Implement N Queen Problem using Backtracking

.

S e

b gt ph sk ok joh
[T N7 - —]

Theory Syllabus SESSION-2019-2020

In Pursuit of Excellence

RCS-502: Design and Analysis of Algorithm 3-1-0

Proposed

Unit Topic Lecture

Introduction: Algorithms, Analyzing Algorithms, Complexity of Algorithms, Growth of
Functions, Performance Measurements, Sorting and Order Statistics - Shell Sort, Quick Sort, 08
Merge Sort, Heap Sort, Comparison of Sorting Algorithms, Sorting in Lincar Time.
Advanced Data Structures: Red-Black Trees, B — Trees, Binomial Heaps, Fibonacci 08
Heaps, Tries, Skip List

Divide and Conquer with Examples Such as Sorting, Matrix Multiplication, Convex Hull

i
‘i d Scarching.
(:

Il

|
1 Greedy Methods with Examples Such as Optimal Reliability Allocation, Knapsack, 08
Minimum Spanning Trees — Prim’s and Kruskal's Algorithms, Single Source Shortest Paths
- Dijkstra’s and Bellman Ford Algorithms.
f Dynamic Programming with Examples Such as Knapsack. All Pair Shortest Paths —
| v Warshal's and Floyd's Algorithms. Resource Allocation Problem.
Backtracking, Branch and Bound with Examples Such as Travelling Salesman Problem,
' Graph Coloring, n-Queen Problem. Hamiltonian Cycles and Sum of Subsets.
‘f v Selected Topics: Algebraic Computation, Fast Fourier Transform, String Matching, Theory
of NP-Completeness, Approximation Algorithms and Randomized Algorithms
References:
1. Thomas H. Coreman, Charles E. Leiserson and Ronald L. Rivest, “Introduction to Algorithms”, Printice

Hall of India.

E. Horowitz & S Sahni, "Fundamentals of Computer Algorithms",

08

08

(5

W

Aho, Hoperaft, Ullman, *The Design and Analysis of Computer Algorithms™ Pearson Education, 2008,
LEE "Design & Analysis of Algorithms (POD)" McGraw Hill

Gajendra Sharma, Design & Analysis of Algorithms, Khanna Publishing House
Richard E.Neapolitan "Foundations of Algorithms" Jones & Bartlett Learning

Jon Kleinberg and Eva Tardos, Algorithm Design. Pearson, 2005.

go Wl A B

Michael T Goodrich and Roberto Tamassia, Algorithm Design: Foundations, Analysis, and Internet
Examples, Second Edition, Wiley, 2006.

9. Harry R. Lewis and Larry Denenberg. Data Structures and Their Algorithms, Harper Collins, 1997
10. Robert Sedgewick and Kevin Wayne, Algorithms, fourth edition, Addison Wesley, 201 1.

11. Harsh Bhasin,”Algorithm Design and Analysis”,First Edition,Oxford University Press.

12. Gilles Brassard and Paul Bratley,Algorithmics:Theory and Practice,Prentice Hall,1995.

Y
\‘4\\ @//

/
Dr. Sémesh Kumar
Prof. & Head, CSE
Maradabad Institute of Technology
ioradabad-244001

Vision & Mission of
Institute

In Pursuit of Excellence

SESSION-
2019-2020

SEM- 5™

Vision of the Institute

To develop industry ready professionals with values and ethics for global needs.

Mission of the Institute

M1:_To impart education through outcome based pedagogic principles.

M2: To provide conducive environment for personality development, training and

entrepreneurial skills.

M3: To induct high professional ethics and accountability towards society in students.

N
a\\id
Or. Semesh Kumar
Prof. & Head, CSE
Moradabad Institute of Technology
Moradabad-244001

SESSION-
Vision & Mission of 2019-2020
Department

SEM- 5™

In Pursuit of Excellence

Vision of the Department

To develop globally recognized computer science and engineering graduates with ethical values for

need of software industries.

Mission of the Department

M1: To impart knowledge through well defined instructional objectives in the field of computer

science and engineering.

M2: To provide learning ambience for skills, innovation, leadership and overall personality

developmeni.

M3: To inculcate professional ethics, teamwork and responsiveness towards society.

vl
\‘\.\\(’\/

Dr. Sdfash K

. u
F:rof. & Head, CSE -
F«.Lj.rad.at).ad Institute of Technology

ragabad-24400

SESSION-
Program Education 2019-2020
Objectives

3 SEM- 5"
In Pursuit of Excellence

The graduates after 3-5 years of program completion will

PEO1: be having entrepreneurial and employable skills in software industries, by adaptirig

themselves in the corporate world by utilizing the defined instructional objectives learnt in

the program.

PEO2: engage in skill enhancement, that would help to work in their own area of interest,

individually or in a team.

PEO3: demonstrate ownership and responsiveness towards the profession and the society.

o |
Yad,
Dr. Somesh Kumar
Prof. & Head, CsSkE
noradabad Institute of Technology
Whoradabad 244001

SESSION-
Program Outcomes 2019-2020

SEM- 5™

In Pursuit of Excellence

Program Outcomes

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization for the solution of complex engineering
problems.

2. Problem analysis: Identify, formulate, research literature, and analyses complex engineering
problems reaching substantiated conclusions using first principles of mathematics, natural
sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and
design system components or processes that meet the specified needs with appropriate
consideration for public health and safety, and cultural, societal, and environmental
considerations.

4. Conduct investigations of complex problems: Use research based knowledge and research
methods including design of experiments, analysis and interpretation of data, and synthesis of
information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
engineering and IT tools, including prediction and modeling to complex engineering activities,
with an understanding of the limitations. :

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess
societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader
in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the
engineering community and with the society at large, such as, being able to comprehend and

write effective reports and design documentation, make effective presentations, and give and
receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s own work, as a member and
leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning:Recognize the need for, and have the preparation and ability to engage in
independent and life-long learning in the broadest context of technological change. "
N\

Dr. S6mesh Kumar
Prof. & Head, CSE
Moradabad Institute of Technology
vioradabad-244001

SESSION-2019-2020
Program Specific Outcomes

SEM- 5"

In Pursuit of Excellence

Prbgram Speciﬁc Outcomes

After completing their graduation, students of Computer Science and Engineering will be able to

1. Comprehend the core subjects of CSE and apply them to resolve domain specific

tribulations.

2. Extrapolate the fundamental concepts in engineering and to apply latest technology with

programming language skills to develop, test, implement and maintain software

products.

\ \\ (N %

Dr. Se/mesh Kumar
Prof. & Head, CSE
'foradabad Institute of Technology
woradabad-244001

INSTRUCTIONS

. Use comments, along with statements, in your program to make it clear and
easy to understand.

. Make the variable names meaningful so that they could convey the purpose
of their use.

. Make sure that all the allocated memory blocks have been deleted.
. Instead of using nested if - else blocks use switch-case construct.

. Write the description of your program in pseudo code, along with the code
listing in the form of data dictionary.

VA
Dr. Soraest Kumar
Frof, & Head, CSE

i’:.‘;.')r:_;:f.‘ai)ad institute of Technology
Moradabad-244001 ‘

DEBUGGING

. Check the pair of curly braces.

. Check the data type of variables used.

. Check that the memory is allocated to the static variables.
. Check that the accessibility restrictions are not violated.

. Check that the pointer variables are allocated the memory before any
references is made.

. Check that the loops are finite. Ensure that the iteration control variables are
modified for each iteration.

0

~ o, , \ ‘lvz

Dr. Sorhesh Kumar
fjfor. & Head, CSE
"aradabad Institute of Tech
idracabad-244001 Spology

Program No.—1

OBJECTIVE:
Write a Program for Recursive Binary & Linear Search.

PROGRAM LOGIC:-

Searching is the process of finding the location of given element in the array. The search is said
to be successful if the given element is found i.e. the element does exists in the array; otherwise
unsuccessful.

There are two approaches to search operation:-

e Linear Search
e Binary Search

(a) Linear Search:-

In Linear Search, we access each element of an array one by one sequentially and see whether
desired element is present in the array or not. A search will be suceessful if all the elements are
accessed and the desired element is found. In worst case, the desired element is not present in the
array. The number of average case we may have to scan half of the size of the array

(n/2).Therefore linear search can be defined as the technique which traverses the array
sequentially to locate the given item.

Algorithm:

linear Search (A, n, K, i)
While i<n
if k=a[i]
return i
else
return linear_search(A, n, K, i+1)
return -1

(b) Binary Search:-

Binary search algorithm is a faster algorithm which reduces running time effectively when
applied to a list of large number of elements. The precondition for the algorithm is that the list
should be in sorted order, either increasing or decreasing, whatever the case may be.

Here is the algorithm which takes the list, the element to be searched as parameters and returns
the place of searched element in the list if found else return -1.

Algorithm:

BinarySearch(A[0..N-1], value, low, high)

{
// invariants: value > A[i] for all i < low

value < A[i] for all i > high R
if (high < low) \

Dr f:“,o/hesh Kumar

Prof. & Head, CSE

noradahad Instin .
homnaoad institute of Technology

rivbied
Fans0ad -24/‘,001

return not_found // value would be inserted at index "low"

mid = (low + high) / 2
if (A[mid] > value)

return BinarySearch(A, value, low, mid-1)
else if (A[mid] < value)

return BinarySearch(A, value, mid+1, high)
else

return mid

}

LAB VIVA QUESTIONS:

Q1: What is searching?
Q2: How the searching is essential for database applications?
Q3: Explain Linear and Binary Search?

Q4: Differentiate between Linear and Binary Search

Q5: What are the different searching techniques known to you? Explain one of

them in detail with a suitable example.
Q6: What is the time complexity of linear search and binary search?

Q7: What is the data structure used to perform recursion?

.-/\,

|
NN /S
Vi ‘\;\ | /
. Somesh Kumar
Prof. & Head, CSE
lioradabad institute of Technology
Mioradabad-244001)

Program No. 2

OBJECTIVE
Write a program to implement Bubble Sort

PROGRAM LOGIC:-

Bubble sort, sometimes shortened to bubble sort, also known as exchange sort, is a
simple sorting algorithm. It works by repeatedly stepping through the list to be sorted,
comparing two items at a time and swapping them if they are in the wrong order. The
pass through the list is repeated until no swaps are needed, which means the list is sorted.
The algorithm gets its name from the way smaller elements "bubble" to the top (i.e. the
beginning) of the list via the swaps. Because it only uses comparisons to operate on
elements, it is a comparison sort. This is the easiest comparison sort to implement.

For example, using Bubble sort algorithms if our initial array is:

12,9,4,99, 120, 1, 3, 10

The basic steps followed by algorithm:-

In the first step compare first two values 12 and 9.

1294991201310

As 12>9 then we have to swap these values
Then the new sequence will be

9124991201310
In next step take next two values 12 and 4

9124991201310

Compare these two values .As 12>4 then we have to swap these values.
Then the new sequence will be

9412991201310
we have to follow similar steps up to end of array. e.g.
9412991201310

9412991201310

94129911203 10 Dr. Sofmesh Kumar
Orof & Head Ok
94129911203 10 Flalargt ot B

Moradabad Institute of Technology

Wioradabad-244G01
9412991312010

9412991310120

When we reached at last index .Then restart same steps unlit the data is not sorted.

The output of this example will be :
1349101299120

ALGORITHM:

Step 1: for i=1 to length[A]

Step2: doforj= length[A] down to it]
Step 3: do if A[j] <A[j-1]

Step4: then exchange A[j] <> A[j-1]

LAB VIVA QUESTIONS:

Q1: What is sorting?
Q2: How the sorting is essential for database applications?

Q3: What is the time complexity of bubble sort?

\ \ \"
- \‘» ‘v“l\ ‘\ /"‘
Or. Somesh Kumar
Prof. & Head, CSE

Moradabad Institute of Technol
wVioradabad-244001 -

Program No. -3

OBJECTIVE:
Write a Program for Heap Sort.

PROGRAM LOGIC:

Heap sort is one of the best general-purpose sorting algorithms, a comparison sort and part of the
selection sort family. Although somewhat slower in practice on most machines than a good

implementation of quick sort, it has the advantages of worst-case O(n log n) runtime. Heap sort
is an in-place algorithm and is not a stable sort.

The heap sort is the slowest of the O(n log n) sorting algorithms, but unlike the merge and quick
sorts it doesn't require massive recursion or multiple arrays to work. This makes it the most
attractive option for very large data sets of millions of items.

The heap sort works as it name suggests - it begins by building a heap out of the data set, and
then removing the largest item and placing it at the end of the sorted array. After removing the
largest item, it reconstructs the heap and removes the largest remaining item and places it in the
next open position from the end of the sorted array. This is repeated until there are no items left

in the heap and the sorted array is full. Elementary implementations require two arrays - one to
hold the heap and the other to hold the sorted elements.

Pros: In-place and non-recursive, making it a good choice for extremely large data sets.
Cons: Slower than the merge and quick sorts.

Maintaining the Heap property

MAX- HEAPIFY is an important routine for manipulating max-heaps. This procedure can be

called in a bottom-up manner to convert an array A[l....n], where n = length[A], into a max

heap. When MAX-HEAPIFY is called it is assumed that the binary trees located at Left(i) and

Right(i) are max-heaps, but that A(i) may be smaller than it children, thus violating the max

heap property.

MAX-HEAPIFY (A, i)

STEP 1: 1 <- Left (i)

STEP 2: r <- Right (i)

STEP 3: if | <= Heap-size [A] and A[l]>A[i]

STEP 4: then largest < 1

STEP 5: else largest € i \
' XA |

STEP 6: if r <= Heap-size [A] and A[r] > Aflargest] X ()

STEP 7; then largest <-r T SQﬁWBSh K_U'nar

Prof. & Head, CSE

Moradabad Institute of Technology
Moradabad-244001

STEP 8: if largest! = i
STEP9: then exchange A[i] <-> Aflargest]

STEP 10: MAX-HEAPIFY (A, largest)
Building a Heap

The procedure BUILD-MAX-HEAP goes through the nodes of the tree and runs MAX-
HEAPIFY on each one.

BUILD-MAX-HEAP (A)
STEP 1: heap-size[A] € length[A]
STEP 2: for i € length[A]/2 downto 1

STEP 3: do MAX_HEAPIFY (A, i)
THE HEAPSORT ALGORITHM

The heap sort algorithm starts by using BUILD-MAX-HEAP to build max heap on the input
array A [1....n], where n=length [A]. Since the maximum element of the array is stored at afi], it
can be put into its correct final position by exchanging it with a[n]. Now it discards the node n
from the heap, remaining A [1.... N-1)] is converted into a max heap. The heap sort algorithm
repeats this process for the max heap of size n-1 down to a heap of size 2.

HEAPSORT (A)

STEP 1: BUILD-MAX-HEAP (A)

STEP 2: for 1 <- length [A] down to 2
STEP 3: do exchange A [1] <-> A[I]
STEP 4: heap-size [A] <- heap-size [A]-]
STEP 5: MAX-HEAPIFY (A, I)

LAB VIVA QUESTIONS:

1. What is the running time of Heap sort?

2. What technique is used to sort elements in heap sort?
3. Is heap sort in place sorting algorithm?

4. Define stable sort algorithm.

Jr. SomestYKumar
rrof. & Head, CSE

Maoradabad Institute of Technology
Moradabad-244001

Program No. — 4

OBJECTIVE:
Write a Program for Merge Sort.

PROGRAM LOGIC

Merge sort is based on the divide-and-conquer paradigm. Its worst-case running time has a lower
order of growth than insertion sort. Since we are dealing with sub problems, we state each sub

problem as sorting a sub array A[p .. r]. Initially, p=1 and r = n, but these values change as we
recurs through sub problems.

Tosort A[p .. r]:

1. Divide Step: If a given array A has zero or one element, simply return; it is already sorted.
Otherwise, split A[p .. 7] into two subarrays A[p..q] and A[g + 1 .. r], each containing about half

of the elements of A[p ..]. That is, g is the halfway point of 4[p .. r].
2. Conquer Step: Conquer by recursively sorting the two sub arrays A[p .. ¢] and A[g + 1.7
3. Combine Step: Combine the elements back in A[p..r] by merging the two sorted sub

arrays A[p .. q] and 4[g + 1 .. 7] into a sorted sequence. To accomplish this step, we will define a
procedure MERGE (4, p; ¢, r).

Note that the recursion bottoms out when the sub array has just one element, sO that it is trivially
sorted.

ALGORITHM:

To sort the entire sequence A[l .. n], make the initial call to the procedure MERGE-SORT (4,
1, n). '

MERGE-SORT (4, p, 1)

1. 1IEp<r // Check for base case

2 THEN g = FLOOR[(p + 1)/2] // Divide step

3. MERGE (A, p, 9) // Conquer step.

4. MERGE (A, g +1,7) // Conquer step.

5 MERGE (A, p, ¢, 1) // Conquer step.

MERGE (4, p, ¢,)

1. me—qg-ptl

2 me—r—(g

3. Create arrays L[1..n +1] and R[1..m + 1] ,

4. FORi—1TOn \ \/,«"
5 DO L[] — Alp+i—1] VALY,

6. FORj<— 1TOn Dr. Sémesh Kumar

Prof. & Head, CSE
Maradabad Institute of Technology
Loradabad-244001

7.

DO R[]~ Alg +/j]

8. Lmtl]leoo

9. R[mt+l1l]ew

10.| i1

- a1

12. FORk«—pTOr

13, DOIFL[i]<R[/]

14. THEN Al[k] < L[i]

15. ie—i+l

16. ELSE A[k] < R[j]

17. je—jt+1

LAB VIVA QUESTIONS:

1. What is the running time of merge sort?
2. What technique is used to sort elements in merge sort?
g Is merge sort in place sorting algorithm?
4, Define stable sort algorithm.

Va

| AL
Dr. Somesh Kumar
Prof. & Head, CSE

Moradabad Institute of Technology
Moradabad-244001

Program No. 5

OBJECTIVE:
Write a program to implement Selection Sort

PROGRAM LOGIC:

Selection sort is conceptually the most simplest sorting algorithm. This algorithm will first find
the smallest element in the array and swap it with the element in the first position, then it will
find the second smallest element and swap it with the element in the second position, and it will
keep on doing this until the entire array is sorted.

It is called selection sort because it repeatedly selects the next-smallest element and swaps it into
the right place.

ALGORITHM:

list: array of items
n: size of list

fori=1ton-1

/* set current element as minimum*/
min =1

/* check the element to be minimum */
forj=itlton

if list[j] < list[min] then
min = j;
end if

end for

/* swap the minimum element with the current element*/
if indexMin !=1 then
swap list{min] and list[i]
end if
end for

LAB VIVA QUESTIONS:

1. What is the time complexity of selection sort. N\

2. s selection sort unstable?. e © /
3. What are the steps in selection sorting? I\'r {}f%okn: ;SES}’!(EU mar

Maradabad Institute of Technology
finradabad-244001

Program No.—6

OBJECTIVE:
Write a Program for Insertion Sort.

PROGRAM LOGIC:

This is an in-place comparison-based sorting algorithm. Here, a sub-list is maintained which is
always sorted. For example, the lower part of an array is maintained to be sorted. An element
which is to be 'insert' in this sorted sub-list, has to find its appropriate place and then it has to be
inserted there. Hence the name, insertion sort. The array is searched sequentially and unsorted
items are moved and inserted into the sorted sub-list (in the same array). This algorithm is not

suitable for large data sets as its average and worst case complexity are of O(n?), where n is the
number of items. :

ALGORITHM:

for j < 2 to length[A]
do key « Al[j]
i j-1
while i > 0 and A[i] > key
do A[i+1] « A[i]
i« i-1
Ali+1] « key

LAB VIVA QUESTIONS:

Define incremental Approach.

Define Complexity.

Discuss time complexity of Insertion Sort.
Where in real world we use the same logic?

e OIS

%

A RN
Dr. Somesh Kumar
Prof. & Head, CSE
horadabad institute of Technology
vioradabad-244001

Program No.—7

OBJECTIVE:
Write a Program for Quick Sort.

PROGRAM LOGIC
Quicksort is a sorting algorithm developed by C. A. R. Hoare that, on average, makes O(nlogn)

(big O notation) comparisons to sort n items. In the worst case, it makes O(nz) comparisons,
though if implemented correctly this behavior is rare. Typically, quicksort is significantly faster
in practice than other O(nlogn) algorithms, because its inner loop can be efficiently implemented
on most architectures, and in most real-world data, it is possible to make design choices that
minimize the probability of requiring quadratic time. Additionally, quicksort tends to make
excellent usage of the memory hierarchy, taking perfect advantage of virtual memory and
available caches. Coupled with the fact that quicksort is an in-place sort and uses no temporary
memory, it is very well suited to modern computer architectures.

Quick sort (also known as "partition-exchange sort") is a comparison sort and, in
efficient implementations, is not a stable sort. The complexity of algorithm is as follows:

Worst case performance O(nz)

Best case performance O(nlogn)
Average case performance O(nlogn)
Worst case space complexity O(n)

ALGORITHM:

QUICKSORT(S, P, 1)

1 ifp<r

2 then q <- PARTITION(S, p,)

3 QUICKSORT(S, p, g-1)

4 QUICKSORT(S, q+1, 1)

PARTITION(S, p, 1)

1 x<-8]r]

2 i<-p-l

3 forj<-ptor-1

4 do if S[j] <=x

5 then i <- i+1

6 swap S[i] <-> S[j]

7 swap S[i+1] <-> S[r] N
8 return i+l A A

‘ it i
Dr. Somesh Kumar
Prof. & Head, CSE
toradabad Institute of Technology
,.';;;aa!;zt>:ad—2/:14001

LAB VIVA QUESTIONS:

Q1: What is sorting?
Q2: How the sorting is essential for database applications?

Q3: What is the time complexity of quick sort?
Q4: What do you mean by asymptotic notations?

W
/I \\ Y

Dr. Somesh Kumar
Prof. & Head, CSE
Woradabad Institute of Technology
Mceradahad-244001

Program No. 8

OBJECTIVE
Write a program to implement Counting Sort

PROGRAM LOGIC

Counting sort is a linear time sorting algorithm used to sort items when they belong to a

fixed and finite set. Integers which lie in a fixed interval, say k1 to k2, are examples of
such items.

The algorithm proceeds by defining an ordering relation between the items from which
the set to be sorted is derived (for a set of integers, this relation is trivial).Let the set to be
sorted be called A. Then, an auxiliary array with size equal to the number of items in the
superset is defined, say B. For each element in A, say e, the algorithm stores the number
of items in A smaller than or equal to e in B(e). If the sorted set is to be stored in an array
C, then for each e in A, taken in reverse order, C[B[e]] = e. After each such step, the
value of B(e) is decremented.

The algorithm makes two passes over A and one pass over B. If size of the range k is
smaller than size of input n, then time complexity=O(n). Also, note that it is a stable

algorithm, meaning that ties are resolved by reporting those elements first which occur
first.

ALGORITHM:

COUNTING SORT(A,B.k)

1. fori«— 1tokdo

2. eli]«9

3. forj < ltondo

4. c[Al]] < c[A[]] +1

5. //c[i] now contains the number of elements equal to i
6. fori«2tokdo

7 c[i] < c[i] + c[i-1]

8. // c[i] now contains the number of elements <i
9. forj « ndownto 1 do

10. B[c[A[{]]] < Al]

11. c[A[i]] < c[A[]] - 1

LAB VIVA QUESTIONS:
1. What is the running time of counting sort?
2. What technique is used to sort elements in counting sort? ;
3. Is counting sort in place sorting algorithm? \ Jl
4. Define stable sort algorithm. '\\\\’\ 5

Dr. Sorhesh Kumar
Prof, & Head, CSE
Liesdahad Institute of Technology
Faaraiabad-244001

Program No. 9

OBJECTIVE:
Write a program to implement Radix Sort

PROGRAM LOGIC:

Radix sort is one of the linear sorting algorithms for integers. It functions by sorting the
input numbers on each digit, for each of the digits in the numbers. However, the process
adopted by this sort method is somewhat counterintuitive, in the sense that the numbers

are sorted on the least-significant digit first, followed by the second-least significant digit
and so on till the most significant digit.

To appreciate Radix Sort, consider the following analogy: Suppose that we wish to sort a
deck of 52 playing cards (the different suits can be given suitable values, for example 1
for Diamonds, 2 for Clubs, 3 for Hearts and 4 for Spades). The 'natural' thing to do would
be to first sort the cards according to suits, then sort each of the four seperate piles, and
finally combine the four in order. This approach, however, has an inherent disadvantage.
When each of the piles is being sorted, the other piles have to be kept aside and kept
track of. If, instead, we follow the 'counterintuitive' aproach of first sorting the cards by
value, this problem is eliminated. After the first step, the four seperate piles are combined
in order and then sorted by suit. If a stable sorting algorithm (i.e. one which resolves a tie
by keeping the number obtained first in the input as the first in the output) it can be easily
seen that correct final results are obtained.

As has been mentioned, the sorting of numbers proceeds by sorting the least significant
to most significant digit. For sorting each of these digit groups, a stable sorting algorithm
is needed. Also, the elements in this group to be sorted are in the fixed range of 0 to 9.
Both of these characteristics point towards the use of Counting Sort as the sorting
algorithm of choice for sorting on each digit (If you haven't read the description on
Counting Sort already, please do so now).

The time complexity of the algorithm is as follows: Suppose that the n input numbers
have maximum k digits. Then the Counting Sort procedure is called a total of k times.
Counting Sort is a linear, or O(n) algorithm. So the entire Radix Sort procedure takes
O(kn) time. If the numbers are of finite size, the algorithm runs in O(n) asymptotic time.

Example:

Following example shows how radix sort operates on seven 3-digit numbers-

Input 15t pass : 2nd pass 37d pass
329 720 720 329
457 355 329 35S
657 aze a36 s
839 457 839 457
436 e57 3 5.5 657
720 329 a457 720
355 839 . &s7 839 \ ' >

\\ \ ’\

Dr. Somesh Kumar
Prof. & Head, CSE
Maradabad Institute of Technology
iite .':u*ahad—?_‘i/loo1

™
& Lt

ALGORITHM:

RADIX-SORT(4,d)

1fori-1ltod

2 do use a stable sort to sort Array 4 on digit /

LAB VIVA QUESTIONS:
1. What is the running time of radix sort?
2. What technique is used to sort elements in radix sort?
3. s radix sort in place sorting algorithm?
4. Define stable sort algorithm.

N ', p
\\ \ |

A
Dr. Som’e’s\h/Kumar

Prof. & Head, CSE
.:..4”n.rnda.bad Institute of Techn
vicradabad-244001

ology

Program No. 10

OBJECTIVE:
Write a program to implement Bucket Sort

PROGRAM LOGIC:

Bucket sort, or bin sort, is a sorting algorithm that works by distributing the elements of an array
into a number of buckets. Each bucket is then sorted individually, either using a different sorting
algorithm, or by recursively applying the bucket sorting algorithm.

The computational complexity depends on the algorithm used to sort each bucket, the number of
buckets to use, and whether the input is uniformly distributed.

Elements are distributed among bins:

29 25 3 49 9 37 21 43

ol B R e f caETe
29 49
Bl

0-9 10-19 20-29 30-39 40-49

Then, elements are sorted within each bin:

0-9 10-19 20-29 30-39 40-49
@
3 9 21 25 29 37 43 49

ALGORITHM:
function bucketSort(array, k) is
buckets < new array of k empty lists
M « the maximum key value in the array
fori= 1 to length(array) do
insert array[i] into buckets[floor(k x array[i] / M)]
fori=1tokdo
nextSort(buckets[i])
return the concatenation of buckets[1],, buckets[k]

LAB VIVA QUESTIONS:
1. What is the use of Bucket Sort?
2. How do you make a bucket sort stable? e

Dr. Sémesh Kumar
Prof. & Head, CSE

Moradabad institute of Technology
Moradabad-244001

Program No. 11

OBJECTIVE:
Write a program to implement Shell Sort

PROGRAM LOGIC:

The shell sort, sometimes called the “diminishing increment sort,” improves on the

insertion sort by breaking the original list into a number of smaller sublists, each of
which is sorted using an insertion sort.

This algorithm avoids large shifts as in case of insertion sort, if the smaller value is to
the far right and has to be moved to the far left.

This algorithm uses insertion sorton a widely spread elements, first to sort them and
then sorts the less widely spaced elements. This spacing is termed as interval. This
interval is calculated based on Knuth's formula as —

h=h*3+1
where —
h is interval with initial value 1

ALGORITHM:

Step 1 — Initialize the value of h

Step 2 — Divide the list into smaller sub-list of equal interval h
Step 3 — Sort these sub-lists using insertion sort

Step 3 — Repeat until complete list is sorted

LAB VIVA QUESTIONS:

1. What sort does shell sort use?
2. s sell sort stable?

Mh
¥ l yl‘\ ///
Dr. Somesh Kumar
Prof. & Head, CSE
Moradabad Instituta of Technology
Moradabad-244001

Program No. 12

OBJECTIVE:

Write a Program to Implement the 0/1 Knapsack problem using (a) Dynamic Programming
method (b) Greedy method

PROGRAM LOGIC:

0-1 knapsack problem The setup is the same, but the items may not be broken into
smaller pieces, so we may decide either to take an item or to leave it (binary
choice), but may not take a fraction of an

Let i be the highest-numbered item in an optimal solution S for W dollars. Then S =S -

{i} is an optimal solution for W - w; dollars and the value to the solution S is V; plus the
value of the sub-problem.

We can express this fact in the following formula: define ¢[i, w]to be the solution for
items 1,2, ... , i and the maxjmum weight w.

The algorithm takes the following inputs
« The max;mum weight W
o The number of items n
« The two sequences vV = <Vy, V2, ..y Vo~ and W = <Wi, W2, eeey Wy >

The set of items to take can be deduced from the table, starting at c[n, w] and tracing
backwards where the optimal values came from.

If ¢fi, w] = c[i-1, w], then item i is not part of the solution, and we continue tracing

with ¢[i-1, w]. Otherwise, item i is part of the solution, and we continue tracing with ¢[i-
1, w-W].

This dynamic-0-1-kanpsack algorithm takes 0(nw) times, broken up as

follows: 8(w) times to fill the c-table, which has (n +1).(w +1) entries, each
requiring 8(1) time to compute. O(n) time to trace the solution, because the tracing
process starts in row 7 of the table and moves up 1 row at each step.

Given a Knapsack of max. capacity W and ‘n’ number of items each having some weight
and value such as wi,w2,W3....W, and vi,Va,V3...... Vp.

Our aim is to choose those elements such that total weight is less than or equal to max.
weight (W) and also gaining the max. profit.

ALGORITHM:

void knapsack(W, n, w, V)
int i, w; 0 A L
int V[n+1][W+1]; //matrix having n+1 rows and W+1 columns 7|

v\ \/

or. Somesh Kumar

CSE

f. & Head, & :

?{ﬁaﬁabaﬁ institute of Technology
iorau N

' inth
{24400

nvoradabadl-=

for w=0to W

V[0, w]=0

for i=0 ton

V[i,0]=0

fori=1ton

for w=1to W
if wli]<w

then V[i, w] =max (V[i-1, w], V[i] + V[i-1, w-w[i]]

else
VI[i, w] = V[i-1, w]
return V[n, W]

LAB VIVA QUESTIONS:
| Define knapsack problem.
2. Define principle of optimality.
3. What is the optimal solution for knapsack problem?
4. What is the time complexity of knapsack problem?

NP4

Dr. Soesh Kumar

f’,’OfﬁHead, CSE
vioradabad Institute
P»’acnradabacj_jéMO(gIeCh”

ology

Program No. 13

OBJECTIVE
Write programs to implement Travelling Salesman problem using Dynamic programming.

PROGRAM LOGIC:

Theory:

The Traveling Salesman Problem (TSP) is a deceptively simple combinatorial problem. It can be
stated very simply: A salesman spends his time visiting n cities (or nodes) cyclically. In one tour
he visits each city just once, and finishes up where he started. In what order should he visit them
to minimize the distance traveled?

Many TSP's are symmetric - that is, for any two cities A and B, the distance from A to B is the
same as that from B to A. In this case you will get exactly the same tour length if you reverse the
order in which they are visited - so there is no need to distinguish between a tour and its reverse,
and you can leave off the arrows on the tour diagram.

If there are only 2 cities then the problem is trivial, since only one tour is possible. For the
symmetric case a 3 city TSP is also trivial. If all links are present then there are (n-1)! Different
tours for an n city asymmetric TSP. To see why this is so, pick any city as the first - then there
are n-1 choices for the second city visited, n-2 choices for the third, and so on. For the
symmetric case there are half as many distinct solutions - (n-1)!/2 for an n city TSP. In either

case the number of solutions becomes extremely large for large n, so that an exhaustive search is
impractical. :

Basic Steps -

Let G(V, E) be a direct graph defining an instance of the TSP.

1. This graph is first represented by a cost matrix where
cij = the cost of edge , if there is a path between i and j
gy= if there is no path

2. Convert cost matrix into reduced matrix i.e every row and column should contain atleast
one ‘0’ entry.

3. Cost of the reduced matrix is the sum of elements that are subtracted from rows and
columns of cost matrix to make it reduced.

4. Make the state space tree for reduced matrix.

5. To find the next E-node, find the least cost valued node by calculating the reduced cost
matrix with every node.

6. If <i,j> edge is to be included, then there are 3 conditions to accomplish this task:

i. Change all entries in row i and column j of A to
ii. Set A[j,i]=o (ilis theroot node)
ii. Reduce all rows and columns in resulting matrix except for rows and columns
containing o

7. Calculate the cost of the matrix where

cost =L + cost(i, j) +r
where L = cost of original reduced cost matrix, and
r = new reduced cost matrix

Repeat the above steps for all the nodes untill all the nodes are generated and we get a path.
Example:

O |
XA
\ \ p

Dr. So/nesh Kumar
Prof. & Head, CSE
Moradabad Institute of Tec

Moradabad-244001 Mhology

i Vertex 1

Cost = 25

| Cost = 53

[Gost = 25

Cost = ;at

Cost = 58 |

eeers | [T]

Cost = 52 i cost = 28
V-ﬁnx 3
Cost = 28
Thus,
Optimal path is:

1-4-52—>5—-3
Cost of Optimal path = 28 units

LAB VIVA QUESTIONS:

1. Define dynamic programming.

Cost =

2. What is memorization in dynamic programmig?

3. What are the uses of dynamic programming?

Mrrarial ;
vioradahad institu
Morad

X \(\)
|\
Dr. Somesh Kumar

Prof. & Head, CSE
ite of Technology

Al o o
AGADIET-2A4AD0
iGadad- L5300

Program No. 14

OBJECTIVE:

Write a Program to Find Minimum Cost Spanning Tree of a given connected undirected graph
using Kruskal's algorithm. Use Union-Find algorithms in your program.

PROGRAM LOGIC:

Kruskal's Algorithm: This is a greedy algorithm. A greedy algorithm chooses some local
optimum (je. picking an edge with the least weight in a MST). Kruskal”s algorithm works as
follows: Take a graph with 'n' vertices, keep adding the shortest (least cost) edge, while avoiding
the creation of cycles, until (n - 1) edges have been added. (NOTE: Sometimes two or more
edges may have the same cost. The order in which the edges are chosen, in this case, does not

matter. Different MSTs may result, but they will all have the same total cost, which will always
be the minimum cost)

The steps for implementing Kruskal's algorithm are as follows:
Remove all self loops and parallel edges

Make a forest containing all the vertices

Sort the edges in non decreasing order of their weight.

Pick smallest edge, check if it forms a cycle with spanning tree formed so far. If cycle
not formed, include this edge . Else discard it.

5. Repeat step 4, until there are (|V|-1) edges in spanning tree. (V is set of vertices)

S W=

ALGORITHM

A=0
for each vertex v € V[G]
MAKE-SET(v)
Sort the edges of E(G) into non decreasing order by weight w
for each edge (u, v) € E(G) taken in non decreasing ordered by weight
if FIND-SET(u) # FIND-SET(v)
A=AU {(u, v)}
UNION(u, v)
return A

Note:

FIND-SET(u) and FIND-SET(v) are used to check whether cycle if created after adding edge
(u,v) or not.

MAKE-SET(v) is used to create a forest from all the vertices.

LAB VIVA QUESTIONS:
What is the time complexity of Kruskal’s algorithm.
2 Define spanning tree.
3 Define minimum cost spanning tree.

\ '\\ % |

/‘J‘ \ -/”
Dr. Sorfiesh Kumar
I" rof. & Head, CSE
Moradabad Institute of Technology

oo~

R o
Ly »:\.‘,7\:.&5;'1;)’?:'\,' 244001

Program No. 15

OBJECTIVE:
Write a Program to Implement N Queen Problem using Backtracking

PROGRAM LOGIC:
Backtracking is kind of solving a problem by trial and error. However, it is a well organized trial
and error. We make sure that we never try the same thing twice. We also make sure that if the

problem is finite we will eventually try all possibilities (assuming there is enough computing
power to try all possibilities).

The n Queens problem: Given is a board of n by n squares. s it possible to place n queens (that

behave exactly like chess queens) on this board, without having any one of them attack any other
queen?

1) Start in the leftmost column
2) If all queens are placed return true
3) Try all rows in the current column. Do following for every tried row.
a) If the queen can be placed safely in this row then mark this
[row, column] as part of the solution and recursively check if
placing queen here leads to a solution.
b) If placing queen in [row, column] leads to a solution then return true.
¢) If placing queen doesn't lead to a solution then unmark this [row,
column] (Backtrack) and go to step (a) to try other rows.

4) If all rows have been tried and nothing worked, return false to trigger
Backtracking.

ALGORITHM
NQueen (k, n)
fori=1tondo

{
If Place (k, i) then

x[k] = i; // place k™ queen to i column
If (k=n) // ifall queens placed

then write (x[1: n]) ;
else NQueens (k+1, n);

}

Place (k, i) // k is the queen number and i is the column no.
for j=1tok-1do

If((x[j]=1) or (abs(x[j]-1i)=abs(j-k)))
then return false
}

return true

Note: Place (k, i) return true if a queen can be placed in the kth row and ith column otherwise
return is false. It tests both whether i is distinct from all previous values of Xi, X2,....Xk.1 and
whether there is no other queen on the same diagonal.

\\\ \\‘:“\\, ’ |

b N
Dr. Somesh Kumar
Prof, & Head, CSE
& =-':'«f."-1‘);7‘n institute of Technology

22 ANNY
wivt dualad-arauu |

LAB VIVA QUESTIONS:

s WP

Define backtracking.
Define live node, dead node.
Define implicit and explicit constraints.

What is the time complexity of n-queens problem.

Dr. Somébs’/}(hmar
Prof. & Head, CSE

Moradabad Institute of Te
S chnology
Moradabad-244001 o

