\square

B. TECH

(SEM-V) THEORY EXAMINATION 2020-21 DIGITAL SIGNAL PROCESSING

Time: 3 Hours
Total Marks: 100
Note: 1. Attempt all Sections. If require any missing data; then choose suitably.
SECTION A

1. Attempt all questions in brief.
$2 \times 10=20$

Q no.	Question	Marks	CO
a.	What are the advantages and disadvantages of digital signal processing?	2	1
b.	Distinguish between recursive and non-recursive structure used for the realization of digital system.	2	1
c.	What are the differences between impulse invariant transformation and bilinear transformation method?	2	2
d.	Explain the phenomenon of digital frequency transformation.	2	2
e.	What is Gibb's phenomenon in FIR filters?	2	3
f.	What is the dead band effect in digital filters?	2	3
g.	Explain the terms: (i)Ccomputations in one place, (ii) Bit reversal.	2	4
h.	Compute the 4-point DFT of the Following sequence x(n)=cos(n $\pi)$ using linear transformation matrix.	2	4
i.	Explain the concept of multistage sampling rate conversion.	2	5
j.	Enlist the various features of digital signal prócessor.	2	5

2. Attempt any three of the following:
$3 \times 10=30$

Q no.	Question	Marks	CO
a.	Determine the coefficients of a continued-fraction expansion of $\mathrm{H}(\mathrm{z})$; Also draw ladder realization structure of $\mathrm{H}(\mathrm{z})$. $H(z)=\frac{2+8 z^{-1}+6 z^{-2}}{\left(1+8 z^{-1}+12 z^{-2}\right)}$	10	1
b.	Use bilinear transformation to convert low pass filter $H(s)=\frac{1}{\left(1+1.41 s+s^{2}\right)}$ into a high pass filter with pass band edge at 100 Hz and $\mathrm{Fs}_{\mathrm{s}}=1 \mathrm{kHz}$.	10	2
c.	Design a linear phase low pass digital filter if the desired frequency response is giving by $H_{d}\left(e^{j \omega}\right)= \begin{cases}e^{-j 3 \omega} & 0 \leq\|\omega\| \leq \frac{\pi}{2} \\ 0 & \frac{\pi}{2}<\|\omega\| \leq \pi\end{cases}$ Using the bartlett window ànd choosing a suitable length of filter length M , find the impulse response and frequency response of designed filter. Determine the system function and difference equation. Also draw the linear phase structure of designed filter	10	3
d.	What are the advantages of FFT over DFT? Explain DIT. Derive the equation for DIT algorithm for $\mathrm{N}=8$ and draw the signal flow graph.	10	4
e.	Explain the process of multirate signal processing in detail. Also enlist the advantages of multirate signal processing.	10	5

Roll No: \square

SECTION C

3. Attempt any one part of the following:

Q no.	Question	Marks	CO
a.	Obtain the direct form-I, direct form-II, cascade, and parallel form realization of a given LTI system: $\mathrm{y}(\mathrm{n})=-0.1 \mathrm{y}(\mathrm{n}-1)+0.72 \mathrm{y}(\mathrm{n}-2)+0.7 \mathrm{x}(\mathrm{n})-0.25 \mathrm{x}(\mathrm{n}-2)$	10	1
b.	For $H(z)=1+2 z^{-1}-z^{-2}+3 z^{-3}+3 z^{-4}-z^{-5}+2 z^{-6}+z^{-7}$ Draw the direct form and linear form FIR implementation. Also compare the implementation.	10	1

4. Attempt any one part of the following:

a.	Compute the poles of an analog Chebyshev filter transfer function that satisfies the constraints: Passband: $\quad 0.8 \leq\left\|H\left(e^{j \omega}\right)\right\| \leq 1 \quad\|\omega\| \leq 0.2 \pi$ Stopband: $\quad\left\|H\left(e^{j \omega}\right)\right\| \leq 0.2 \quad 0.32 \pi \leq\|\omega\| \leq \pi$ And determine $\mathrm{H}(\mathrm{s})$ and hence obtain $\mathrm{H}(\mathrm{z})$ using Bilinear transformation. Assume $\mathrm{T}=1 \mathrm{sec}$.	10	2
b.	Design a digital low pass Butterworth IIR filter using impulse invariant method for the following specification. (assume $\mathrm{T}=1 \mathrm{sec}$) $\begin{array}{ll} \text { Passband: } & 0.8 \leq\left\|H\left(e^{j \omega}\right)\right\| \leq 1 \quad\|\omega\| \leq 0.2 \pi \\ \text { Stopband: } & \left\|H\left(e^{j \omega}\right)\right\| \leq 0.2 \quad 0.6 \pi \leq\|\omega\| \leq \pi \end{array}$	10	2
	Attempt any one part of the following:		
a.	Design a low pass digital filter using Kaiser window satisfying the specifications given below: Passband cutoff frequency $\mathrm{F}_{\mathrm{p}}=150 \mathrm{~Hz}$ Stopband cutoff frequency $\mathrm{F}_{\mathrm{s}}=250 \mathrm{~Hz}$ Sampling frequency $\mathrm{F}_{1}=1000 \mathrm{~Hz}$ Passband attenuation $A_{p}=0.1 \mathrm{~dB}$ Stopband attenuation $\mathrm{A}_{\mathrm{s}}=40 \mathrm{~dB}$		3
b.	Explain the following terms with respect of finite word length effect in digital filters: (i) Coefficient quantization error, (ii)Quantization noise truncation and rounding	10	3

6. Attempt any one part of the following:

a.	Given two sequences $\mathrm{x}_{1}(\mathrm{n})=\{1,2,2\}$ and $\times 2(\mathrm{n})=\{1,2,3,4\}$. Determine the circular convolution of $\times 1(\mathrm{n})$ and $\times 2(\mathrm{n})$ using: i. \quadGraphical Method ii. Stockholm's Method	10	4
b.	Compute IDFT of the sequence $\mathrm{X}(\mathrm{k})=\{7,-0.707-\mathrm{j} 0.707,-\mathrm{j}, 0.707-$ $\mathrm{j} 0.707,1,0.707+\mathrm{j} 0.707, \mathrm{j},-0.707+\mathrm{j} 0.707\}$, using FFT Algorithm.	10	4

7. Attempt any one part of the following:

a.	Briefly explain the applications of MDSP: Sub band Coding of Speech signals and Quadrature mirror filters with suitable diagram.	10	5
b.	Write the short note on: (i) (ii)\quadRecursive Least Square Algorithm Window LMS Algorithm	10	5

