MORADABAD INSTITUTE OF
TECHNOLOGY

IN PURSUIT OF EXCELLENCE

MANUAL
OF

Data Structure using C Lab

(KCS351)
Session: 2019-20

Prepared By

|

Manoj Kr Singh |
Assistant Prof’ |‘
CSI: Dept. T
MIT Moradabad ;

|

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
MORADABAD INSTITUTE OF TECHNOLOGY, MORADABAD -244001

ESSION-2019-2020

Index
F S[:M_ 3!'((7‘¥7‘ e T |
In Pursuit of Excellence |
Content ' Page No.|
2
Index
Vision & Mission of Institute ‘
e o = R §
Vision & Mission of Department
S S .o L { L
Program Educational Objectives |
BRETNE K
Program Outcomes
e
Program Specific Outcomes
B
Course Evaluation Scheme
TR
Course Outcomes of Practical
T e R I
CO -PO Mapping |
- e ["—7 12
CO-PSO Mapping |
e R B o O . e
List of Programs as per University
e L
List of Programs with enhancement by the Faculty
N T T
Programs Theory and Pseudocode
N@/ ar
2 m
Orf_)f & Huad (i‘ " ep\‘«—‘ ‘0‘\\ N

SESSION-2019-2020

Vision & Mission of
Institute SEM- 34

In Pursuit of Exccllence

Vision of Institute

To develop industry ready professionals with values and ecthics for

global needs.

Mission of Institute

I. To impart education through outcome based pedagogic principles.

2.To provide conducive environment for personality development,
training and entrepreneurial skills.

2D

3.To induct high professional ethics and accountability towards
society in students.

(US]

Vision & Mission of Department

In Pursuit of Excellence

SESSION-2019-2020 |

EL

DL LRI

Vision of Department

To develop globally recognized computer science and engineering

graduates with ethical values for need of software industries.

Mission of Department

To impart knowledge through well-defined instructional objectives in
the field of computer science and engineering.

. To provide learning ambiance for skills, innovation, leadership and

overall personality development.

To inculcate professional ecthics, teamwork and reSponsiveness

towards society.

[SESSION-2019-2020

Program Education
Objectives

In Pursuit of Excellence S J_

Program Education Objectives

PEO 1: The graduates will have entrepreneurial and employable skills in
software industries, by adapting themselves in the corporate

world by utilizing the defined instructional objectives learnt in the
program.,

PEO 2: The graduates will engage in skill enhancement, that would help
to work in their own area of interest, individually or in a team.

PEQO 3: The graduates will demonstrate ownership. and responsiveness
towards the profession and the society.

n

T
|

| SESSION-2019-2020

\
|
Program Outcomes

' SEM- 31

In Pursuit of Exccllence

Program Outcomes

9.

Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization for the solution of complex engineering
problems.

Problem analysis: Identify, formulate, research literature, and analyse complex engineering
problems reaching substantiated conclusions using first principles of mathematics. natural
sciences, and engineering sciences.

Design/development of solutions: Design solutions for complex engineering problems and
design system components or processes that meet the specified needs with appropriate
consideration for public health and safety, and cultural, societal, and environmental

considerations.

Conduct investigations of complex problems: Use research-based knowledge and research
methods including design of experiments. analysis and interpretation of data. and synthesis
of information to provide valid conclusions.

Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
engineering and IT tools, including prediction and modeling to complex engineering
activities, with an understanding of the limitations.

The engineer and society: Apply reasoning informed by the contextual knowledge to
assess societal, health, safety, legal and cultural issues and the consequent responsibilitics
relevant to the professional engineering practice.

Environment and sustainability: Understand the impact of the professional engineering
solutions in societal and environmental contexts. and demonstrate the knowledge of. and
need for sustainable development.
Ethies: Apply ethical principles and commit to professional ethics and responsibilities and
norms of the engineering practice.

Individual and team work: Function effectively as an individual. and as a member or

leader in diverse teams, and in multidisciplinary settings. N\
.
urnd
6 Somesr‘GSKE 7 l\(“;w
Or. piead; <7 Technot”
prot- & 4 \nstute s

10.

11.

12

Communications: Communicate effectively on complex engineering activities with the
engineering community and with the society at large, such as. being able to comprehend
and write effective reports and design documentation, make effective presentations, and give
and receive clear instructions.

Project management and finance: Demonstrate knowledge and understanding ol the
engineering and management principles and apply these to one’s own work. as a member
and leader in a team, to manage projects and in multidisciplinary environments.

Life-long learning: Recognize the need for, and have the preparation and ability to engage
in independent and life-long learning in the broadest context of technological change.

€ oo
¢ S0, O™
OF: T reidedty
?\r\o‘?\dag 0%
Move

[SESSION-2019-2020

Program Specific Qutcomes

In Pursuit of Excellence |

After completing their graduation, students of Computer Science and
Engineering will be able to do-

PSO 1: Comprehend the core subjects of CSE and apply them to resolve
domain specific tribulations.

PSO 2: Extrapolate the fundamental concepts in engineering and to apply
latest technology with programming language skills to develop, test,
implement and maintain software products.

| SESSION-2019-2020

Course Evaluation Scheme

SEM-397

In Pursuit of Excellence . !

AKTU, LUCKNOW, U.P
Study and Evaluation Scheme B.Tech in
Computer Science & Engincering [Effective
from the session 2019-20]

B.TECH (COMPUTER SCIENCE AND ENGINEERING)

M SEMESTER. I

i Eud

< Subject Feriod- Evaluadon Schewe 4

SL Wt Semeiter §

< Subject Toml Creds
S Codes

E T P ILCE EA G Lol PRy IF | FE

KORGS5 - . !
‘ Enzmeennsz Solence ! . . s, > ¥ ‘ s
s 2 £ 5 o 8 o Bt
1 38 P { 24 30 1090 150 4

Courselash IV

Teckmical 2

2 Commumicanon Univerzal ke 5] S 100
Euman value:

3 ECS301 Datz Soucturs 3 3 : 35 26 0 ki 155 4
Computer Crganizanon and

4 KCsag? i E ! 13 4

Archizzenhuos

Dhizerens Stucturer & Theory

(]
i
-
s

7 OIKCS332 Computer Organizznon Lab [O R

Dhnzerer Stuctue & Leogic
La=

&)
[l
e

M
'
o]

Mim Project o Internzhip
9 | KCS354 : ¢ G ; : 1
Asserunent™
1 ENCROl
16 Cron L 2 { k; I f
KXNC302
1 OO s (Eszennaz! for Hons
20y Dazea:
| Tatal ER 23

T SESSION-2019-2020
Course OQutcomes

|
|
\
|
|
I

| SEM- 34
In Pursuit of Excellence yy I R

COURSE OUTCOMES

At the end of course, Students will be able to:

e] TE a : S i .]
LConrsg ? CcO Course OQutcomes (COs) Cognifive
Code L g e T e K ~ Levels

implement matrix and perform operation like
COIl | KCS351.1 | insertion, deletion. searching. traversing by using Apply |
o LOERY - 3 i , ol }
CO2 | KCS351.2 | implement various scarching techniques Apply {
KCS351 = T I R e . e a5

implement various sorting techniques using
CO3 | KCS351.3 | recursive and non -recursive method Apply

CO4 | KCS351.4 | implement linear data structure stack, queue, linked Apply ‘
| list oy AR S ol L fle
CO5 | KCS351.5 | implement non-linear data structures tree and graph

In Pursuit of Excellence

CO-PO Mapping i

CO-PO Mapping

e

T

i
Coutse co POI | PO2
Code |

CO1 | KCS351.1| 3 |
 CO2 | KCS351.2 | 3
KCS351 | CO3 | KCS351.3 | 3
CO4 | KCS351.4 | 3 B
CO5 | KCS351.5 | 3
Mapping ERE
Strength KCS351 | | |
High: 3 Average:2 Low: |

PO3] PO4
"T, —
|

POS

|
NN N NN

PO6

e peom i) EYELAR S S

SEM- 3

4 _i_ o S R
PO7 PO8 PO9 | POI10 LP()I |

sy, SESS— SIS

= N PRI

- [SESSION-2019-2020 |

-
| POI2

SESSION-2019-2020

CO-PSO Mapping
SEM- 31
In Pursuit of Excellence
CO-PSO Mapping
;;MQ .
co PSOI PSO2 o
Course Code P
co1 KCS351.1 3 3 ,
o2 KCS351.2 3 3
KCS351 | co3 KCS351.3 3 3
CO4 | KCS351.4 7 S ON
o5 KCS351.5 3 3 =
Mapping Strength KCS351 3 3
1?/ ¢
s\ K
, ey ok Xec““(’\ocﬁ
% N D‘ -‘ S\.\\U\e 0\0 A
pore

12

SESSION-2019-2020

List of Programs as per SEM- 394
In Pursuit of Excellence - - University "R,

Data Structure using C Lab (KCS351)

Write C Programs to illustrate the concept of the following:

1. Sorting Algorithms-Non-Recursive.

2. Sorting Algorithms-Recursive.

3. Searching Algorithm.

4. Implementation of Stack using Array.

5. Implementation of Queue using Array.

6. Implementation of Circular Queue using Array.

7. Implementation of Stack using Linked List.

8. Implementation of Queue using Linked List.

9. Implementation of Circular Queue using Linked List.

10. Implementation of Tree Structures, Binary Tree. Tree Traversal. Binary
Search Tree, insertion and Deletion in BST.

11. Graph Implementation. BFS, DFS. Minimum cost spanning tree, shortest path algorithm.

§ SESSION-2019-2020

! List of Programs with

' enhancement by the Faculty 3
Member | SEM- 3%

In Pursuit of Excellence |

Data Structure using C Lab (KCS8351)

Program Name

Program to nnplemem puonl\ qucu: using [. ml\gd [.ist. (Bevond Syllabus)

Program to implement solution of Tower of Hanoi problem using recursion. (Beyond

Program to construct Binary Search Tree and its inorder, preorder and postorder traversal.

19

Program to implement BFFS (-Bﬁéﬁil_\wﬁl"sfgéarL‘Ii) gl-'zurwlklvl‘rzi'vcrsal algorithm.

Program to 1mplement DFS (Deplh First Search) graph traversal algorithm.

Program to implement Kuruskal’s algomhm 1o find minimum spanning tree of a given graph.

S. No.
1 Program to implement Matrix Mulnpllmtlon (Bf(:}"nrn('l Syllabus)
2 Program to implement Linear Search. -
3 Program to implement Binary Search.
4 Program to implement Bubble Sort.
5 Program to implement Insertion Sort. s
6 Program to imp-lé;ﬁ'eTtieliécTi('{hA%i{
7 Program to implement qud\ Sort (Rccursl\Q
8 Program to implement Merge Sort (Rcunsl\u
9 Program to implement Stack using Array.
10 Program to implement queue using mm\
11 Program to implement circular queue using Arr: 1\
12 Program to nnplcﬁéBTSlde usmw Linked List.
13 Program to implement queue using Linked List.
14
15
Syllabus)
16
17
18
191
20

WAP to implement warshall’s algorithm to find all pair shortest path of'a graph.

66
70

74

Program No. -1

Program Name: Program to implement Matrix Multiplication.

Theory:

Array plays a very important role in C language. When we store the various numbers of the same
data type then we have to usc the concept ol Array. So. we can say that array is the collection of
same data type.

Array is classified into following categories: -

I. Single dimension array 2. Double Dimension Array

Double Dimension Array: - Double Dimension array is used to store the same data type
numbers in matrix form. The syntax for defining the single dimensional array is as follows: -

<Data type><array name> [size of row]| [size of column];
For example, if we define int a [3][3]: This means a is an array of 3 Rows and columns. The first

element is stored at the position of a [0] [0] and the last element is stored at the position of
a[2] [2].

Algorithm for Matrix Multiplication

MatMul (a.b.m.n.p)

1. for(i=1 to m)

2 for(j =1 to p)
3. cli][j] =0
4. for(k= 1to n)
S. clillil = clillil+ali]ljl*blillj]
6. exit
174
urmnar
Dr SO\E\‘;S \‘égg tecnnciod

Viva Voce Questions

What do you mean by an Array”

How to create an Array?

Advantages and disadvantages ol Array?

Can we declare array size as a negative number?

Is there any difference between int || a and inta []?
What is the two-dimensional array?

9
MeS'Lee y
Dr. 5C)\—\e?l‘i\'. 0\20 Tecn0
prot- & © st oo
N\Nadag’:bad-'zt‘
RS - .

16

Program No. -2

Program Name: Program to implement Lincar Search.

Theory:

Searching is the process of finding the location of given element in the linear array. The scarch is
said to be successful if the given element is found i.c. the element does exists in the array:
otherwise unsuccessful.

There are two approaches to search operation:

e Linear Search

e Binary Search

Linear Search: Given no information about the array a. the only way to search for given
element item is to compare item with each element of a one by one. This method. which traverses

a sequentially to locate item is called linear search or sequential search.

Algorithm for Linear Search:

Linear (A, ITEM, N. LOC)

1. [INSERT ITEM AT THE END OF THE A] SET A[N+1]=ITEM
2. SET LOC: =1.

3. [SEARCH FOR ITEM|]

REPEAT WHILLE A [LOC|! = [TEM,
SET LOC: = LOC+1.
[END OF LOOP|
[SUCCESSFUL?] IF LOC: =N-+1, THEN SET LOC: =0.

L N —

=

Viva Voce Questions

Where is linear searching used?

What is the best case for linear search?

What is the worst case for lincar search?

What are the various applications of lincar search?

Program No. -3
Program Name: Program to implement Binary Search.

Theory:

Suppose the elements of the array are sorted in ascending order (if the elements are numbers) or
dictionary order (if the elements are strings). The best searching algorithm, called binary search.
is used to find the location of the given clement. We do use this approach in our daily life. For
example, suppose we want to find the meaning of the term modem in a computer dictionary.
Obviously, we don’t search page by page. We open the dictionary in the middle (roughly) to
determine which half contains the term being sought. Then for the subsequent search one half is
discarded, and we search in the other half. This process is continued till other we have located the
required term or that term is missing from the dictionary, which will indicated by the fact that at

the end we will be left with only one page.

Algorithm for Binary Search
BINARY (DATA, LB, UB, ITEM, 1.OC)
Here data is a sorted array with lower and upper bounds L.B, UP respectively and ITEM is given

item of information. The variable BEG. END and MID denotes respectively. the beginning. end

and middle location LOC of [TEM in DATA or set LOC:=NULL.

1. [Initialize segment variables.|

Set BEG: =LB. END: =UB. MID: INT (BEG+END)/2).

2. Repeat step 3 &4 while BEG<=END and DATA [MID]!=ITEM.
3. IF ITEM < DATA[MID]. then
Set END: =MID-1.
ELSE:
Set BEG: =MID+1.
[End of If structure.]
4. Set MID: =INT ((BEG+LEND)/2). W
[End of Step 2 loop.| eSh Kuma‘
5. IF DATA[MID] :=ITEM., then: Dr. Sg?\i\";ad: CSg *;echﬂo‘ogv

Set LOC: = MID.
ELSE:

Set LOC: = NULL.

[End of If structure. |

6. Exit.

. 03N

Viva Voce Questions

What is Binary Search ?

What are the advantages of Binary Search over Linear Search.
Explain why complexity of Binary Search is O(log n)?
What is the limitation of binary search.

Dr. Somesh Kumar

orof. & Head, CSE
7r;[')c:zfadabad Institute of Technology

Moradabad-244001

21

Program No. -4

Program Name: Program to implement Bubble Sort.

Theory:

In Bubble sort, each element of the array is compared with its adjacent element. The algorithm
processes the list in passes. A list with n eleients requires n-1 passes for sorting. Consider an
array A of n elements whose elements are (0 be sorted by using Bubble sort. The algorithm
processes like following.

1. In Pass 1, A[0] is compared with A[I], A[1] is compared with A[2], A[2] is compared
with A[3] and so on. At the end of pass 1, the largest element of the list is placed at the
highest index of the list.

2. 1In Pass 2, A[0] is compared with A[1]. A[1] is compared with A[2] and so on. At the end
of Pass 2 the second largest element o' the list is placed at the second highest index of the
list.

3. In pass n-1, A[0] is compared with A[1]. A[1] is compared with A[2] and so on. At the

end of this pass. The smallest element of the list is placed at the first index of the list.

Algorithm or Pseudocode of Bubble Sort

o Step 1: Repeat Step 2 For i =0 to N-1
o Step 2: Repeat ForJ =i+ 1toN-1I
o Step 3: IF A[J] > A[i]

SWAP A[J] and A[i]

[END OF INNER LOOP] /\(\/V

[END OF OUTER LOOP h Kumaf
o Step 4: EXIT

22

(OS]

Viva Voce Questions

What is the best case complexity of bubble sort?
What is the average case complexit, of bubble sort?
What is the worst case complexity «f bubble sort?

What are number of passes required by bubble sort?

Program No. -5

Program Name: Program to implement Inisertion Sort.

Theory:

Insertion sort is the simple sorting algorithni which is commonly used in the daily lives while
ordering a deck of cards. In this algorithm, we insert each element onto its proper place in the

sorted array. This is less efficient than the other sort algorithms like quick sort, merge sort. etc.
Consider an array A whose elements are to te sorted. Initially, A[0] is the only element on the
sorted set. In pass 1. A[1] is placed at its proper index in the array.

In pass 2, A[2] is placed at its proper index in the érray. Likewise, in pass n-1, A[n-1] is placed at
its proper index into the array.

To insert an element A[K] to its proper indev. we must compare it with all other elements i.c.
A[k-1], A[k-2], and so on until we find an element A[j] such that, A[j]<=A[k].

All the elements from A[k-1] to A[j] need to te shifted and A[k] will be moved to A[j+1].

Algorithm or Pseudocode of Insertion Sort

o Step 1: Repeat Steps 2 to 5 for K =1 1o N-1
o Step 2: SET TEMP = ARR[K]
Step3: SET J=K - 1
o Step 4: Repeat while TEMP <=ARR[J|
SET ARR[J + 1] = ARR[J]

O

SETJ=1J-1
[END OF INNER LOOP])v\
o Step 5: SET ARR[J + 1]=TEMP ar
um
[END OF LOOP] Of Some(?%\‘\:‘ B
E al, nno
o Step 6: EXIT prof. & Hf\“s{\\u\e of :ec
Mora aba . d_24400

24

el

Viva Voce Questions

What is the best case complexity of insertion sort?
What is the average case complexity of insertion sort?
What is the worst case complexity of insertion sort?
What are number of passes required by insertion sort?

Dr. Somesh Kumar
Frof. & Head, CSE

Moradabad institute of Technology
Moradabad-244001

Program No. -6
Program Name: Program to implement Selection Sort.

Theory:

In selection sort, the smallest value among the unsorted elements of the array is selected in every

pass and inserted to its appropriate position into the array.

First, find the smallest element of the array and place it on the first position. Then, find the
second smallest element of the array and place it on the second position. The process continues

until we get the sorted array.
The array with n elements is sorted by using n-1 pass of selection sort algorithm.

o In Ist pass, smallest element of the array is to be found along with its index pos. then.
swap A[0] and A[pos]. Thus A[0] is sorted. we now have n -1 elements which are to be
sorted.

o In 2nd pas, position pos of the smallest element present in the sub-array A[n-1] is found.
Then, swap, A[1] and A[pos]. Thus A[0)] and A[1] are sorted, we now left with n-2
unsorted elements.

o Inn-1th pass, position pos of the smallcr element between A[n-1] and A[n-2] is to be
found. Then, swap, A[pos] and A[n-1]

Therefore, by following the above explained process, the elements A[0], A[1]. A[2]...... A[n-1]

are sorted.

Algorithm or Pseudocode of Selection Sort

SELECTION SORT(ARR, N)

o Step 1: Repeat Steps 2 and 3 for K = 1 to N-1
o Step 2: CALL SMALLEST(ARR, K, N, POS) M

26

o Step 3: SWAP A[K] with ARR[POS]

o

[END OF LOOP]
Step 4: EXIT

SMALLEST (ARR, K, N, POS)

(0]

Step 1: [INITIALIZE] SET SMALL = ARR[K]

Step 2: [INITIALIZE] SET POS = K
Step 3: Repeat for J = K+1 to N -1
[F SMALL > ARR[J]

SET SMALL = ARR[J]

SET POS = '

[END OF IF]

[END OF LOOP]

Step 4: RETURN POS

51 0 O

Viva Voce Questions

What is the best case complexity of selection sort?
What is the average case complexity of selection sort?
What is the worst case complexity of selection sort?
What are number of passes required by selection sort?

'« & Head, CSE |
‘:ﬂ\;)?;dgbad Institute of Technology

MQ[adabad'Z

28

Program No. -7

Program Name: Program to implement Quick Sort (Recursive).

Theory:

Quick sort is the widely used sorting algorithm that makes n log n comparisons in average case
for sorting of an array of n elements. This algorithm follows divide and conquer approach. The

algorithm processes the array in the following way.

I. Set the first index of the array to left and loc variable. Set the last index of the array to right

variable. i.e. left = 0, loc = 0, end = n - 1, where n is the length of the array.

2. Start from the right of the array and scan the complete array from right to beginning

comparing each element of the array with the element pointed by loc.
Ensure that, a[loc] is less than a[right].

I Ifthis is the case, then continue with the comparison until right becomes equal to the loc.
2. Ifa[loc] > a[right], then swap the two values. And go to step 3.

Set, loc = right

(F'S)

4. Start from element pointed by left and compare each element in its way with the element

pointed by the variable loc. Ensure that a[loc] > a[left]
5. ifthis is the case, then continue with the comparison until loc becomes equal to left.
6. [loc] <alright], then swap the two values and go to step 2.

7. Set, loc = left.

Algorithm or Pseudocode of Quicksort

PARTITION (ARR, BEG, END, LOC)

o Step 1: [INITIALIZE] SET LEFT = BEG, RIGHT = END, LOC = BEG, FLAG =0
o Step 2: Repeat Steps 3 to 6 while FLAG =0

o Step 3: Repeat while ARR[LOC] <=ARR[RIGHT]
AND LOC != RIGHT 0‘\/

Dr. Somesh Kumar
Prof. & Head, CSE

29 Moradabad Institute of Technology
Mecradabad-244001

(0]

O

SET RIGHT = RIGHT - |

[END OF LOOP]

Step 4: IF LOC = RIGHT

SET FLAG = |

ELSE IF ARR[LOC] > ARR[RIGHT]
SWAP ARR[LOC] with ARR[RIGHT]
SET LOC = RIGHT

[END OF IF]

Step 5: IF FLAG =0

Repeat while ARR[LOC] >= ARR[LEFT] AND LOC != LEFT
SET LEFT-=LEFT +1

[END OF LOOP]

Step 6:IF LOC=LEFT

SET FLAG =1

ELSE IF ARR[LOC] < ARR[LEFT]
SWAP ARR[LOC] with ARR[LEFT]
sSET'LOC = LEFT

[END OF IF]

[END OF IF]

Step 7: [END OF LOOP]
Step 8: END

QUICK _SORT (ARR, BEG, END)

(0]

o

Step 1: IF (BEG < END)

CALL PARTITION (ARR, BEG. END. LOC)
CALL QUICKSORT(ARR, BEG. LOC - 1)
CALL QUICKSORT(ARR, LOC + I, END)
[END OF IF]

Step 2: END

b

Dr. Somesh Kumar
Prof. & Head, CSE

Moradabad Inst

)

itute of Technology

Moradabad-244001

30

B oL o =

Viva Voce Questions

What is the best case complexity of quick sort?
What is the average case complexity of quick sort?
What is the worst case complexity of quick sort?
Is Quicksort faster than bubble sort?

Dr. Somesh Kumar
Prof. & Head, CSE
Moradabad Institute of Technology
Moradabad-244001

31

Program No. -8

Program Name: Program to implement Merge Sort (Recursive).

Theory:
Merge sort is the algorithm which follows divide and conquer approach. Consider an array A of n

number of elements. The algorithm processes the elements in 3 steps.

1. If A Contains 0 or 1 elements then it is already sorted, otherwise, Divide A into two sub-

array of equal number of elements.

2. Conquer means sort the two sub-arrays recursively using the merge sort.

W

Combine the sub-arrays to form a single final sorted array maintaining the ordering of the

array.
“The main idea behind merge sort is that, the short list takes less time to be sorted. -

Algorithm or Pseudocode of Mergesort

o Step 1: [INITIALIZE] SET [=BEG,J=MID + 1, INDEX =0
o Step 2: Repeat while (I <= MID) AND (J<=END)

IF ARR[I] < ARR[J]

SET TEMP[INDEX] = ARR[I]

SETI=1+1

ELSE

SET TEMP[INDEX] = ARR[J]

SET J =1 +]

[END OF IF]

SET INDEX = INDEX + 1

[END OF LOOP]

Step 3: [Copy the remaining

elements of right sub-array, if

any]

[F 1> MID x

Repeat while J <= END . Dr So/r\n/eVSh Kumar
SET TEMP[INDEX] = ARR[J] Prof. & Head, CSE

Moradabad Institute of Technology
32 Moradabad-244001

SET INDEX = INDEX + I, SETJ =] + 1
[END OF LOOP]

[Copy the remaining elements of

left sub-array, if any]

ELSE

Repeat while | <= MID

SET TEMP[INDEX] = ARR[I]

SET INDEX = INDEX + 1, SET =1+ 1
[END OF LOOP]

[END OF IF]

o Step 4: [Copy the contents of TEMP back to ARR] SET K = 0

o Step 5: Repeat while K < INDEX
SET ARR[K] = TEMP[K]
SET K=K +1
[END OF LOOP]

Step 6: Exit
MERGE_SORT(ARR, BEG, END)

o Step 1: IF BEG < END
SET MID = (BEG + END)/2
CALL MERGE_SORT (ARR, BEG, MID)
CALL MERGE_SORT (ARR, MID + I, END)
MERGE (ARR, BEG, MID, END)
[END OF IF]

o Step 2: END

X

Dr. Somedskégéumar
prof. & Head, ey
Moradabad \nsmuteoof ;fec

Moradabad-

|9}
(%)

(U8 o

N

Viva Voce Questions

. What is the average case complexity for merge sort algorithm?
. What is the worst case complexity for merge sort algorithm?
. What is the best case complexity for merge sort algorithm?

. What are the total numbers of passes in merge sort of “n’ numbers?

Dr. Somlmaf

& Head, CSE
‘:A;?;dabad Institute of Technology

Moradabad-244001

Program No. -9

Program Name: Program to implement Stack using Array.
Theory:

A Stack is a linear data structure that follows the LIFO (Last-In-First-Out) principle. Stack has
one end, whereas the Queue has two ends (front and rear). It contains only one pointer top
pointer pointing to the topmost element of the stack. Whenever an element is added in the stack.
it is added on the top of the stack, and the element can be deleted only from the stack. In other
words, a stack can be defined as a container in which insertion and deletion can be done from

the one end known as the top of the stack.

Key points related to stack

o Itis called as stack because it behaves like a real-world stack, piles of books. etc.

o A Stack is an abstract data type with a pre-defined capacity, which means that it can store

the elements of a limited size.
&
o It is a data structure that follows some order to insert and delete the elements. and that

order can be LIFO or FILO.

Standard Stack Operations

The following are some common operations implemented on the stack:

o push(): When we insert an element in a stack then the operation is known as a push. If the

stack is full then the overflow condition occurs.

o pop(): When we delete an element from the stack, the operation is known as a pop. If the
stack is empty means that no element exists in the stack, this state is known as an

underflow state.
o isEmpty(): It determines whether the stack is empty or not.
o isFull(): It determines whether the stack is full or not.'
o peek(): It returns the element at the given position.
o count(): It returns the total number of elements available in a stack. [

o change(): It changes the element at the given position. Dr. SOmeSh Kumar

a of. & Head, CSE
a Fh;./IZJr:-xdabad Institute of Technology

Moradabad-244001

o display(): It prints all the elements available in the stack.

Array implementation of Stack

In array implementation, the stack is formed by using the array. All the operations regarding the

stack are performed using arrays.

Adding an element onto the stack (push operation)

Adding an element into the top of the stack is referred to as push operation. Push operation

involves following two steps.

1. Increment the variable Top so that it can now refer to the next memory location.

2. Add element at the position of incremented top. This is referred to as adding new element at

the top of the stack.

Stack is overflown when we try to insert an element into a completely filled stack therefore. our

main function must always avoid stack overflow condition.

Algorithm or pseudocode for push operation

begin
if top = n then stack full
top=top + 1
stack (top): = item;
end

Deletion of an element from a stack (Pop operation)

Deletion of an element from the top of the stack is called pop operation. The value of the variable
top will be incremented by 1 whenever an item is deleted from the stack. The top most element of
the stack is stored in an another variable and then the top is decremented by 1. the operation
returns the deleted value that was stored in another variable as the result. The underflow

condition occurs when we try to delete an element from an already empty stack.

)/

36 Dr. Somesh Kumar

" ~ Prof. & Head, CSE
Moradabad Institute of Technology
Moradabad-244001 g

Algorithm or pseudocode for pop operation

begin

if top = -1 then stack empty;
item = stack(top);

top = top - I;

end;

| >
Dr. Somesh Kumar

Prof. & Head, CSE
Moradabad !nstitute of Technology

Moradabad-244001

A AR R

Viva Voce Questions

What is Stack and where it can be used?
What is the condition of full in stack?
What are various operation on stack?
What are the applications of stack?
Which type of data structure is stack?

What are overflow and underflow conditions in stack?

Dr. Son‘?e)z/ll\ Kumar

Prof. & Head, CSE
Moradabad Institute of Technology
Moradabad-244001

Program No. -10

Program Name: Program to implement queue using Array.

Theory:

1. A queue can be defined as an ordered list which enables insert operations to be performed at

one end called REAR and delete operations to be performed at another end called FRONT.
2. Queue is referred to be as First In First Out list.

3. For example, people waiting in line for a rail ticket form a queue.

Enqueue
(insertion)
2 ¢
A A
»j
Dequeue Front Rear
(Deletion)

Applications of Queue

Due to the fact that queue performs actions on first in first out basis which is quite fair for the

ordering of actions. There are various applications of queues discussed as below.

1. Queues are widely used as waiting lists for a single shared resource like printer, disk.

CPU.

“ Dr. Somesh Kumar

2 Pref. & Head, CSE
Moradabad Institute of Technology
Moradabad-244001

2. Queues are used in asynchronous transfer of data (where data is not being transferred at

the same rate between two processes) for eg. pipes, file 10, sockets.

(9S)

Queues are used as buffers in most of the applications like MP3 media player, CD player.
gl
4. Queue are used to maintain the play list in media players in order to add and remove the

songs from the play-list.

5. Queues are used in operating systems for handling interrupts.

Array representation of Queue

We can easily represent queue by using linear arrays. There are two variables i.e. front and rear.
that are implemented in the case of every queue. Front and rear variables point to the position
from where insertions and deletions are performed in a queue. Initially. the value of front and
queue is -1 which represents an empty queue. Array representation of a queue containing 5

elements along with the respective values of front and rear, is shown in the following figure.

0 1 2 3 4 5
front rear
0 4
Queue

The above figure shows the queue of characters forming the English word "HELLO". Since. No
deletion is performed in the queue till now, therefore the value of front remains -1 . However. the

value of rear increases by one every time an insertion is performed in the gueue. After inserting

Dr. Somesh Kumar
Prof. & Head, CSE

foradabad Institute of Technology
Moradabad-244001

40

an element into the queue shown in the above figure, the queue will look something like

following. The value of rear will become 5 while the value of front remains same.

0 1 2 3 4 5
front rear
0 5

Queue after inserting an element

After deleting an element, the value of front will increase from -1 to 0. however, the queue will

look something like following.

0 1 2 3 4 5
front rear
1 5

Queue after deleting an element

MNa-

Dr. Somesh Kumar
Prof. & Head, CSE

41 Moradabad Institute of Technology
Moradabad-244001

Algorithm or pseudocode to insert any element in a queue

o Step 1: I[F REAR = MAX - |
Write OVERFLOW
Go to step
[END OF IF]
o Step 2: IF FRONT = -1 and REAR = -1
SET FRONT =REAR =0
ELSE
SET REAR = REAR + |
[END OF IF]

o Step 3: Set QUEUE[REAR] = NUM
o Step 4: EXIT

M

Dr. Somesh Kumar
Prof. & Head, CSE

Moradabad Institute of Technology
Moradabad-244001

42

(%)

e

Viva Voce Questions

What is Queue?

List some Queue real-life applications

What are some types of Queue?

What is the condition of full and empty if queue is implemented using array”?

What is the limitation of simple queue?

A~

Dr. Somesh Kumar
Prof. & Head, CSE
Moradabad Institute of Technology
Moradabad-244001

Program No. -11

Program Name: Program to implement circular queue using Array.

Theory:

A circular queue is similar to a linear queue as it is also based on the FIFO (First In First Out)
principle except that the last position is connected to the first position in a circular queue that

forms a circle. It is also known as a Ring Buffer.

There was one limitation in the array implementation of Queue. If the rear reaches to the end
position of the Queue then there might be possibility that some vacant spaces are left in the
beginning which cannot be utilized. So, to overcome such limitations, the concept of the circular

queue was introduced.

s Circular Queue Representation

2

As we can see in the above image, the rear is at the last position of the Queue and front is
pointing somewhere rather than the 0" position. In the above array, there are only two elements
and other three positions are empty. The rear is at the last position of the Queue: if we try to

insert the element then it will show that there are no empty spaces in the Queue.

44 Dr. Somesh Kumar
Prof. & Head, CSE
Moradabad Institute of Technolagy
Moradabad-244001

There is one solution to avoid such wastage of memory space by shifting both the elements at the

left and adjust the front and rear end accordingly. It is not a practically good approach because

shifting all the elements will consume lots of time. The efficient approach to avoid the wastage of

the memory is to use the circular queue data structure.

Operations on Circular Queue

The following are the operations that can be performed on a circular queue:

O

Front: It is used to get the front element from the Queue.

Rear: [t is used to get the rear element from the Queue.

enQueue(value): This function is used to insert the new value in the Queue. The new
element is always inserted from the rear end.

deQueue(): This function deletes an element from the Queue. The deletion in a Queue

always takes place from the front end.

Applications of Circular Queue

The circular Queue can be used in the following scenarios:

@)

©]

O

Memory management: The circular queue provides memory management. As we have
already seen that in linear queue, the memory is not managed very efficiently. But in case
of a circular queue, the memory is managed efficiently by placing the elements in a
location which is unused.

CPU Scheduling: The operating system also uses the circular queue to insert the
processes and then execute them.

Traffic system: In a computer-control traffic system, traffic light is one of the best

examples of the circular queue. Each light of traffic light gets ON one by one after every

jinterval of time. Like red light gets ON for one minute then yellow light for one minute

and then green light. After green light, the red light gets ON.

Dr. Somesh Kumar

Head, CSE
Eﬁr;;bgbad Institute of Technology

45 \Mioradabad-244

Enqueue operation

The steps of enqueue operation are given below:

o First, we will check whether the Queue is full or not.

o Initially the front and rear are set to -1. When we insert the first element in a Queue. front

and rear both are set to 0.

o When we insert a new element, the rear gets incremented, i.e., rear=rear+1.

Scenarios for inserting an element

There are two scenarios in which queue is not full:

o Ifrear != max - 1, then rear will be incremented to mod (maxsize) and the new value will
be inserted at the rear end of the queue.

o Iffront != 0 and rear = max - 1, it means that queue is not full, then set the value of rear to

0 and insert the new element there.

There are two cases in which the element cannot be inserted:

o When front ==0 && rear = max-1, which means that front is at the first position of the

Queue and rear is at the last position of the Queue.

o front==rear + 1;

Algorithm to insert an element in a circular queue

Step 1: [F (REAR+1)%MAX = FRONT
Write " OVERFLOW "

Goto step 4

[End OF IF]

Step 2: [F FRONT = -1 and REAR = -1
SET FRONT =REAR =0
ELSE IF REAR = MAX - | and FRONT ! =0

SET REAR =0

ELSE

SET REAR = (REAR + 1) % MAX n/
[END OF IF] Dr. Somesh Kumar

of. & Head, CSE
S.z)radabac lnstitute of Technology

= roradabad-244001

Step 3: SET QUEUE[REAR] = VAL

Step 4: EXIT

Dequeue Operation

The steps of dequeue operation are given below:

o First, we check whether the Queue is empty or not. If the queue is empty. we cannot

perform the dequeue operation.
o When the element is deleted, the value of front gets decremented by 1.

[f there is only one element left which is to be deleted. then the front and rear are reset to -
L

O

Algorithm to delete an element from the circular queue

Step 1: IF FRONT = -]
Write " UNDERFLOW "
Goto Step 4
[END of IF]

Step 2: SET VAL = QUEUE[FRONT]

Step 3: [F FRONT = REAR
SET FRONT = REAR = -]

ELSE

IF FRONT = MAX -1
SET FRONT =0
ELSE

SET FRONT = FRONT + |
[END of IF]
[END OF IF]

Step 4: EXIT

Dr. S6mes Kumar
Prof. & Head, CSE

Moradabad Institute of Technol
Moradabad-244001 il

47

(98]

Viva Voce Questions

What are benefits of Circular Queue over simple queue?
What is the condition of full and empty if circular queue is implemented using array?
What are the applications of circular queue?

How does circular queue work?

M

Dr. gomesh Kumar

i - tf‘e\ag:&“s& Tachnolody
adahat ﬂ..rl“ ite o1 19

‘\Icﬁocgradabad-zMOO |

48

Program No. -12

Program Name: Program to implement Stack using Linked List.

Theory: Instead of using array. we can also use linked list to implement stack. Linked list

allocates the memory dynamically. However, time complexity in both the scenario is same for all

the operations i.e. push, pop and peek.

[n linked list implementation of stack, the nodes are maintained non-contiguously in the memory.
Each node contains a pointer to its immediate successor node in the stack. Stack is said to be

overflown if the space left in the memory heap is not enough to create a node.

top ——> NodeData X

t

Node Data Next

t

MNode Data Next

T

.S

Mode Data Next
Stack

The top most node in the stack always contains null in its address field. Let’s discuss the way in

which, each operation is performed in linked list implementation of stack.

P
Dr. Semesh Kumar

f & Head, CSE _
‘:Ag?adabad Institute of Technology

Moradabad—244001

49

Adding a node to the stack (Push operation)

Adding a node to the stack is referred to as push operation. Pushing an element to a stack in
linked list implementation is different from that of an array implementation. In order to push an

element onto the stack, the following steps are involved.

1. Create a node first and allocate memory to it.

2. Ifthe list is empty then the item is to be pushed as the start node of the list. This includes
assigning value to the data part of the node and assign null to the address part of the node.
3. If there are some nodes in the list already, then we have to add the new element in the
beginning of the list (to not violate the property of the stack). For this purpose. assign the
address of the starting element to the address field of the new node and make the new
node, the starting node of the list.
Head
‘ node 1 node 2 node 3
value value value
————r— next — next s next
—— Head
v
: — —
node 1 ' node 2 node 3
value value value
L F——p next " next — next
node 0
value
— next =i
New Node /\/‘W

Dr. Somesh Kumar

Prof. & Head, CSE '
50 Moradabad Institute of Technology

Moradabad-244001

Deleting a node from the stack (POP operation)

Deleting a node from the top of stack is referred to as pop operation. Deleting a node from the
linked list implementation of stack is different from that in the array implementation. In order to

pop an element from the stack, we need to follow the following steps :

I.~ Check for the underflow condition: The underflow condition occurs when we try to pop

from an already empty stack. The stack will be empty if the head pointer of the list points to null.

2. Adjust the head pointer accordingly: In stack, the elements are popped only from one end.
therefore, the value stored in the head pointer must be deleted and the node must be freed. The

next node of the head node now becomes the head node.

Display the nodes (Traversing)

Displaying all the nodes of a stack needs traversing all the nodes of the linked list organized in

the form of stack. For this purpose, we need to follow the following steps.

. Copy the head pointer into a temporary pointer.
2. Move the temporary pointer through all the nodes of the list and print the value field attached

to every node.

Dr. Somesh Kumar
Prof. & Head, CSE
Moradabad Institute o#Technology
Mocradabad-244007

51

0]

Viva Voce Questions

. How stack is implemented using Linked List?
. Compare Array based vs Linked List stack implementations.

. What is the condition for overflow and underflow in linked list implementation of stack?

Dr. Soéih Kumar

Prof. & Head, CSE
Moradabad Institute of Technology
Moradabad-244001

W
[§®]

Program No. -13
Program Name: Program to implement queue using Linked List.

Theory: The array implementation of queue can not be used for the large scale applications
where the queues are implemented. One of the alternative of array implementation is linked list

implementation of queue.

In a linked queue, each node of the queue consists of two parts i.e. data part and the link part.

Each element of the queue points to its immediate next element in the memory.

[n the linked queue, there are two pointers maintained in the memory i.c. front pointer and rear
pointer. The front pointer contains the address of the starting element of the queue while the rear
pointer contains the address of the last element of the queue.

[nsertion and deletions are performed at rear and front end respectively. If front and rear both are
NULL, it indicates that the queue is empty.

The linked representation of queue is shown in the following figure.
9 — 1 —— 7 ——n A7

front rear

Linked Queue

Operation on Linked Queue

There are two basic operations which can be implemented on the linked queues. The operations

are Insertion and Deletion.

%

Dr. Somesh Kumar
Prof. & Head, CSE
Moradabad Institute of Technology
Moradabad-244001

n
(%)

Insert operation

The insert operation append the queue by adding an element to the end of the queue. The new
element will be the last element of the queue.

Firstly, allocate the memory for the new node ptr by using the following statement.
Ptr = (struct node *) malloc (sizeof(struct node));

There can be the two scenario of inserting this new node ptr into the linked queue.

In the first scenario, we insert element into an empty queue. In this case, the condition, front ===
NULL, becomes true. Now, the new element will be added as the only element of the queue and

the next pointer of front and rear pointer both, will point to NULL.

|. ptr->data = item;

2 if(front == NULL)

3. {

4. front = ptr;

3 rear = ptr;

6. front -> next = NULL;
T rear -> next = NULL;
8. }

In the second case, the queue contains more than one element. The condition front = NULL
becomes false. In this scenario, we need to update the end pointer rear so that the next pointer of’
rear will point to the new node ptr. Since, this is a linked queue. hence we also need to make the
rear pointer point to the newly added node ptr. We also need to make the next pointer of rear

point to NULL.

1. rear -> next = ptr;
2, rear = ptr: ' X/\%/

rear->next = NULL; Dr. Somesh Kumar
Prof. & Head, CSE '

Moradabad Institute of Technology
54 Moradabad-244001

OS]

In this way, the element is inserted into the queue.

Algorithm to insert an element from the circular queue

o Step 1: Allocate the space for the new node PTR
Step 2: SET PTR -> DATA = VAL
o Step 3: I[F FRONT =NULL
SET FRONT = REAR =PTR
SET FRONT -> NEXT = REAR -> NEXT = NULL
ELSE
SET REAR -> NEXT =PTR
SET REAR =PTR
SET REAR -> NEXT = NULL
[END OF IF]
o Step 4: END

O

Delete operation

Deletion operation removes the element that is first inserted among all the queue elements.
Firstly, we need to check either the list is empty or not. The condition front == NULL becomes
true if the list is empty, in this case, we simply write underflow on the console and make exit.
Otherwise, we will delete the element that is pointed by the pointer front. For this purpose. copy
the node pointed by the front pointer into the pointer ptr. Now, shift the front pointer, point to its
next node and free the node pointed by the node ptr. This is done by using the following

statements.

1. ptr= front;
2. front = front -> next;

free(ptr);

(US)

Dr. Somesh Kumar
Prof. & Head, CSE

Moradabad Instituta of Technology
55 Moradabad-244001

Algorithm to delete an element from the circular queue

o Step 1: IF FRONT = NULL
Write " Underflow "
Go to Step 5
[END OF IF]
o Step2: SET PTR = FRONT
o Step 3: SET FRONT = FRONT -> NEXT
o Step 4: FREE PTR
o Step 5: END

Dr. SOmesh Kumat
Prof. & Head, CSE
Moradabad Institute of Technology
Moradabad-244001

56

Viva Voce Questions

I. How queue is implemented using Linked List?
2. Compare Array based vs Linked List queue implementations.

. What is the condition for full and empty in linked list implementation of queue?

(U%)

Dr. Some)bw%mar

Prof. & Head, CSE A
Moradabad Institute of Technology
- Moradabad-244001

57

Program No. -14

Program Name: Program to implement priority queue using Linked List.

Theory: A priority queue is an abstract data type that behaves similarly to the normal queue
except that each element has some priority, i.e., the element with the highest priority would come
first in a priority queue. The priority of the elements in a priority queue will determine the order

in which elements are removed from the priority queue.

The priority queue supports only comparable elements. which means that the elements are either

arranged in an ascending or descending order.

Example: start is a pointer that contains the address of first node.

BECEE SBE —EEE—E0E-

Start

Characteristics of a Priority queue

A priority queue is an extension of a queue that contains the following characteristics:

o Every element in a priority queue has some priority associated with it.

o An element with the higher priority will be deleted before the deletion of the lesser
priority.

o Iftwo elements in a priority queue have the same priority. they will be arranged using the

FIFO principle.

Dr. Somesh Kumar
38 Prof. & Head, CSE A

Maradabad Institute of Technology

Moradabad-244001

Algorithm to insert an element in priority queue
INSERT (HEAD, DATA, PRIORITY)

Step 1: Create new node with DATA and PRIORITY

Step 2: Check if HEAD has lower priority. If true follow Steps 3-4 and end. Else goto Step 5.
Step 3: NEW -> NEXT = HEAD

Step 4: HEAD = NEW

Step 5: Set TEMP to head of the list

Step 6: While TEMP -> NEXT != NULL and TEMP -> NEXT -> PRIORITY > PRIORITY
Step 7: TEMP = TEMP -> NEXT

[END OF LOOP]

Step 8: NEW -> NEXT = TEMP -> NEXT

Step 9: TEMP -> NEXT = NEW

Step 10: End

Algorithm to delete an element in priority queue
DELETE (HEAD)
Step 1: Set the head of the list to the next node in the list. HEAD = HEAD -> NEXT.

Step 2: Free the node at the head of the list

Step 3: End

e
Dr. Somesh Kumar

Prof. & Head, CSE
Moradabad Institute of Technolf)gy
Moradabad-244001

59

W B~ W N -

Viva Voce Questions

What is priority queue?

What are priority queues used for?

What is difference between queue and priority queue?
How is data stored in priority queue?

What are the applications of priority queue?

Dr. Somesh K
Prof. & Head, CSE
Moradabad Institute of

Moradabad-244001

60

umar

\

Technology

Program No. -15

Program Name: Program to implement solution of Tower of Hanoi problem using recursion.

Theory: Tower of Hanoi is a mathematical puzzle where we have three rods and n disks. The

objective of the puzzle is to move the entire stack to another rod, obeying the following simple

rules:

1. Only one disk can be moved at a time.

2. Each move consists of taking the upper disk from one of the stacks and placing it on top of
another stack i.e. a disk can only be moved if it is the uppermost disk on a stack.

3. No disk may be placed on top of a smaller disk.

Algorithm or Pseudocode for Tower of Hanoi solution using recursion

START

Procedure Hanoi(disk, source, dest, aux)

IF disk == 1, THEN
move disk from source to dest
ELSE.
Hanoi(disk - 1, source, aux, dest) // Step |
move disk from source to dest // Step 2
Hanoi(disk - 1, aux, dest, source) // Step 3
END IF

END Procedure

STOP
0
Dr. So&/\esh Kumar

Prof. & Head, CSE

Moradabad Institute of Tech
Moradabad-244001 nology

Do

Viva Voce Questions

What is Tower of Hanoi problem?
What is the complexity of recursive solution of Tower of Hanoi problem?
What is the optimal data structure used to solve Tower of Hanoi problem?

What is the number of moves required to solve Tower of Hanoi problem for n disks?

Can Tower of hanoi problem solved iteratively?

Dr. Somesh Kumar
Prof. & Head, CSE
Moradabad institute of Technology

5 Moradabad-244001

Program No. -16

Program Name: Program to construct Binary Search Tree and its inorder, preorder and

postorder traversal.
Theory:

|. Binary Search tree can be defined as a class of binary trees, in which the nodes are arranged in
a specific order. This is also called ordered binary tree.
2. In a binary search tree, the value of all the nodes in the left sub-tree is less than the value of

the root.

[9'5]

Similarly. value of all the nodes in the right sub-tree is greater than or equal to the value of the

root.

4. This rule will be recursively applied to all the left and right sub-trees of the root.

Example:
Root Node
30
,.// \\\
) "
/.// \‘\
¥ -y
15 . 60
/ 5\ AN
/ / \‘, /"" k
¥ p ¥ 3
7 22 45 P4
;’ A
2 / A\
/ \
/ \
/ N\
/ y
17 | 27

Binary Search Tree

A
Dr. Somesh Kumar
Prof. & Head, CSE

Moradabad !nstitute of Technology
Moradabad-244001

63

Algorithm or Pseudocode for insertion in binary search tree

I. Create a new BST node and assign values to it.
2. insert (node, key)
i) if root == NULL,
return the new node to the calling function.

ii) if root->data < key

call the insert function with root=>right and assign the return value in root=>right.

root->right = insert(root->right, key)

iii) if root->data > key
call the insert function with root->left and assign the return value in root->left.
root->left = insert(root->left, key)

4. Finally, return the original root pointer to the calling function.

Algorithm for inorder traversal of binary search tree

1. Traverse the left subtree, i.e., call Inorder(left-subtree)

2. Visit the root.

3. Traverse the right subtree, i.e., call Inorder(right-subtree)

Algorithm for preorder traversal of binary search tree

1. Visit the root.

. Traverse the left subtree, i.e., call Preorder (left-subtree)

)

3. Traverse the right subtree, i.e., call Preorder (right-subtree)

Algorithm for postorder traversal of binary search tree

I. Traverse the left subtree, i.e., call Postorder (left-subtree)

2. Traverse the right subtree, i.e., call Postorder (right-subtree)

3. Visit the root. V
| Dr. So%@sh Kumar

Prof. & Head, CSE
64 Moradabad Institute of Te
Moradabad-244001

chnology

S o

Viva Voce Questions

Define Binary Tree.
What is Binary Search Tree?

Explain the difference between Binary Tree and Binary Search Tree with an

example?

Why do we want to use Binai‘y Search Tree?

65

ML~
Dr. Somesh Kumar
Prof. & Head, CSE

Moradabad Institute of Technology
Moradabad-244001

Program No. -17

Program Name: Program to implement BFS (Breadth First Search) graph traversal algorithm.
Theory:

Graph is another important non-linear data structure. This data structure is used to represent
relationship between pairs of elements which are not necessarily hierarchical in nature. A graph
is defined as

“Graph G is an ordered set (V, E) where V (G) represents the set of elements, called vertices and

E (G) represents the edges between these vertices.

Representation of Graphs: There are two ways to represent a graph G=(V.E):

e Asan adjacency matrix

e Asan adjacency lists

Breadth First Search (BFS) Algorithm
Breadth first search is a graph traversal algorithm that starts traversing the graph from root node
and explores all the neighboring nodes. Then, it selects the nearest node and explore all the

unexplored nodes. The algorithm follows the same process for each of the nearest node until it
finds the goal.

Example

Consider the graph G shown in the following image, calculate the minimum path p from node A
to node E. Given that each edge has a length of 1.

Adjacency Lists

A:B,D
B:C,F
A > B > C N CyE, 6
AL 7R :
7N /N / ~ G:E
/ \\\ // \ .
/ \\\ # \'\ b E!B,F
/, \ // \\ / G)
¥ \, ¥ L . F:A
D > F < E © D:F

A

i Dr. Somesh Kumar
Prof. & Head, CSE
Moradabad Institute of Technology
Moradabad-244001

Solution:

Minimum Path P can be found by applying breadth first search algorithm that will begin at node
A and will end at E. the algorithm uses two queues, namely QUEUE 1 and QUEUE 2.

QUEUE 1 holds all the nodes that are to be processed while QUEUE 2 holds all the nodes that
are processed and deleted from QUEUE 1.

Let’s start examining the graph from Node Al
1. Add A to QUEUE1 and NULL to QUEUE2.
1. QUEUEI] = {A}
2. QUEUE2 = {NULL}

2. Delete the Node A from QUEUEI and insert all its neighbors. Insert Node A into QUEUE2

I. QUEUEI = {B, D}
2. QUEUE2 = {A}

3. Delete the node B from QUEUE and insert all its neighbors. Insert node B into QUEUE2.

I. QUEUEI = {D, C, F}
2. QUEUE2 = {A, B}

4. Delete the node D from QUEUE! and insert all its neighbors. Since F is the only neighbor of it
which has been inserted, we will not insert it again. Insert node D into QUEUEZ2.

I. QUEUEI = {C, F}
2. QUEUE2 = { A, B, D}

5. Delete the node C from QUEUET and insert all its neighbors. Add node C to QUEUE2.

I. QUEUEI = {F, E, G}
2. QUEUE2 = {A,B.D, C}

6. Remove F from QUEUEI and add all its neighbors. Since all of its neighbors has already been
added, we will not add them again. Add node F to QUEUE2.

I. QUEUEI = {E, G}
2. QUEUE2={A,B.D,C.F}

Dr. Somesh Kumar
Prof. & Head, CSE

67 Moradabad Institute of Tech
Moradabad-244001 e

7. Remove E from QUEUEL, all of E's neighbors has already been added to QUEUET therefore
we will not add them again. All the nodes are visited and the target node i.e. E is encountered into
QUEUER2.

1. QUEUEI = {G}
2. QUEUE2 = {A,B,D,C,F,E}

Now, backtrack from E to A, using the nodes available in QUEUE2.

The minimum path willbe A - B — C — E.

Algorithm or Pseudocode of BFS

o Step 1: SET STATUS =1 (ready state)
for each node in G

o Step 2: Enqueue the starting node A
and set its STATUS =2
(waiting state)

o Step 3: Repeat Steps 4 and 5 until
QUEUE is empty

o Step 4: Dequeue a node N. Process it
and set its STATUS =3

(processed state).

o Step 5: Enqueue all the neighbors of
N that are in the ready state
(whose STATUS = 1) and set
their STATUS =2
(waiting state)
[END OF LOOP]

o Step 6: EXIT

Dr. Somesh K
Prof. & Head, CSEumar

Moradabad Instityte of Te
Moradabad-2'44001 Gnnaksgy

68

(%)

Viva Voce Questions

What is the use of Breadth first search?
Which data structure is used to implement BFS?

Can BFS find shortest path?

69

Mi
Dr. Somesh Kumar

Prof. & Head, CSE
Moradabad Institute of Techn
Moradabad-244001

ology

Program No. -18
Program Name: Program to implement DFS (Depth First Search) graph traversal algorithm.

Theory:

Depth First Search (DFS) Algorithm

Depth first search (DFS) algorithm starts with the initial node of the graph G, and then goes to
deeper and deeper until we find the goal node or the node which has no children. The algorithm.
then backtracks from the dead end towards the most recent node that is yet to be completely

unexplored.

The data structure which is being used in DFS is stack. The process is similar to BFS algorithm.
In DFS, the edges that leads to an unvisited node are called discovery edges while the edges that

leads to an already visited node are called block edges.

Example :

Consider the graph G along with its adjacency list, given in the figure below. Calculate the order

to print all the nodes of the graph starting from node H, by using depth first search (DFS)

algorithm.
A\ it Adj]acency LIStS
///// \.\'». \\‘\’\,_ A 3 81 D
rd \ hat
e "g‘ \"\ B i C‘ F
e \ \,\.
-~ \ C:E|G,H
) ¥ i \ o G
A » B > C pa G:.E,H
F P andt | g E:B,F
/ \\\ ,/I Y /"
: / \ / F:A
/ \\ "/ -\.\" / .
) \] ' / D:F
¥ LY Jr/ \ v
D > F « { E ¥ H:A

Dr. Soésh Kumar

Prof. & Head, CSE
70 ' Moradabad Institute of Technology
Moradabad-244001

b

RS

Solution:

Push H onto the stack

STACK: H

POP the top element of the stack i.e. H, print it and push all the neighbors of H onto the stack that
are is ready state.

Print H
STACK: A

Pop the top element of the stack i.e. A, print it and push all the neighbors of A onto the stack that
are in ready state.

Print A
Stack: B, D

Pop the top element of the stack i.e. D, print it and push all the neighbours of D onto the stack
that are in ready state.

Print D
Stack: B, F

Pop the top element of the stack i.e. F, print it and push all the neighbours of I onto the stack that
are in ready state.

Print F
Stack: B

Pop the top of the stack i.e. B and push all the neighbours

Print B
Stack: C

Pop the top of the stack i.e. C and push all the neighbours.

Print C
Stack: E, G

Pop the top of the stack i.e. G and push all its neighbours.

Print G ~ Dr. Some/sm%mar

Prof. & Head, CSE
71 Moradabad Institute of Technology
Moradabad-244001

2] Stack: E

Pop the top of the stack i.e. E and push all its neighbors’.

|. PrintE
24 Stack :

Hence, the stack now becomes empty and all the nodes of the graph have been traversed.

The printing sequence of the graph will be :

H->A—D—-F->B—-C—G—E

Algorithm or Pseudocode of DFS

This algorithm executes a depth —first search on Graph G beginning at the starting node A.

STEP 1: initialize all nodes to the ready state (STATUS: =1)

STEP 2: Push the starting node An in QUEUE. And change its status to
The waiting state. (STATUS: =2).

STEP 3: Repeat Steps 4 and 5 until QUEUE is empty:

STEP 4: Pop the Top node N of STACK. Process N and change the status
of N to the processed state. (STATUS: =3)

STEP 5 Push onto STACK all the neighbors of N that are still in the ready
state (STATUS=1), and change their status to the waiting
state (STATUS+2).
[End of Step 3 loop]

STEP 6: exit.

Dr. So esh K
‘ S um
Prof. & Heaq, CSE i

Moradabad Institut
Morada bad_244%tg1Technology

72

00 = oy b

Viva Voce Questions

What is the use of depth first search?

Which data structure is used to implement DFS?
Which is better depth first or breadth first?

Why BFS takes more memory than DFS?

Can DFS find shortest path?

73

1

Dr. Somesh Kumar
Prof. & Head, CSE

Moradabad Institute of Technology
Moradabad-244001

Program No. -19

Program Name: Program to implement Kruskal's algorithm to find minimum spanning tree

of a given graph.

Theory:

The minimum spanning tree (MST) of a graph defines the cheapest subset of edges that keeps the
graph in one connected component. Telephone companies are particularly interested in minimum
spanning trees, because the minimum spanning tree of a set of sites defines the wiring scheme
that connects the sites using as little wire as possible. It is the mother of all network design

problems.
Minimum spanning trees prove important for several reasons:

« They can be computed quickly and easily, and they create a sparse subgraph that reflects a
lot about the original graph.

« They provide a way to identify clusters in sets of points. Deleting the long edges from a
minimum spanning tree leaves connected components that define natural clusters in the
data set, as shown in the output figure above.

e They can be used to give approximate solutions to hard problems such as Steiner tree and
traveling salesman.

e As an educational tool, minimum spanning tree algorithms provide graphic evidence that

greedy algorithms can give provably optimal solutions.
Two classical algorithms efficiently construct minimum spanning trees

I. Prim's and

2. Kruskal's.

Kruskal's algorithm is an algorithm in graph theory that finds a minimum spanning tree for a
connected weighted graph. This means it finds a subset of the edges that forms a tree that

includes every vertex, where the total weight of all the edges in the tree is minimized.

Xh
Dr. Somesh Kumar
Prof. & Head, CSE

Moradabad Institute of Technology
Moradabad-244001

74

[f the graph is not connected, then it finds a minimum spanning forest (a minimum spanning tree

for each connected component). Kruskal's algorithm is an example of a greedy algorithm.

Example:

Algorithm or Pseudocode of Kruskal’s algorithm

Kruskal(G)

1. for each vertex v in G do

2 Define an elementary cluster C'(v) < {v}.
3 Initialize a priority queue Q to contain all edges in G, using
the weights as keys.
4 Defineatree 7'« O //T will ultimately contain the edges of the MST
7s Dr. Sofadsh Kumar
Prof. & Head, CSE | -5

Maradabad Institute of Technology
Moradabad-244001

S while 7 has fewer than n-1 edges do //'n is total number of vertices
7 (u,v) < Q.removeMin() // edge u,v is the minimum weighted route from/to v

/* prevent cycles in T. add u,v only if T does not already contain an edge consisting of u
and v. Note that the cluster contains more than one vertex only if an edge containing a pair of the

vertices has been added to the tree. */

8 Let C(v) be the cluster containing v, and let C'(v) be the cluster containing u.
9 if C(v)# C(u) then
10 Add edge (v,u) to 7.
11 Merge C(v) and C(u) into one cluster, that is, union C(v) and
C(u).

12 return tree 7'

Dr. Soméil})%mar

h!;rof. & Head, CSE
oradabad Institute of T, :
Moradabad-2440001 echnolpgy

76

(98]

Viva Voce Questions

. What is the time complexity of Kruskal algorithm?

What is the use of Kruskal algorithm?
How is Kruskal algorithm implemented?

What is the difference between Prim and Kruskal algorithm?

Dr. Sorég\\é{umar

Prof. & Head, CSE
Moradabad Institute of Technology
Maoradabad-244001

77

Program No. -20

Program Name: Program to implement warshall’s algorithm to find all pair shortest path of a

graph.

Theory:

In graph theory, the shortest path problem is the problem of finding a path between two vertices

such that the sum of the weights of its constituent edges is minimized.

The most important algorithms for solving this problem are:

« Dijkstra’s algorithm — solves single source problem if all edge weights are greater than
or equal to zero. Without worsening the run time, this algorithm can in fact compute the
shortest paths from a given start point s to a// other nodes.

» Bellman-Ford algorithm — solves single source problem if edge weights may be
negative.

o A% search algorithm solves for single source shortest paths using heuristics to try to speed
up the search

« Floyd-Warshall algorithm — solves all pairs shortest paths.

« Johnson’s algorithm — solves all pairs shortest paths, may be faster than Floyd-Warshall

on sparse graphs.

Warshall’s Algorithm is an algorithm for finding the shortest path between all the pairs of
vertices in a weighted graph. This algorithm works for both the directed and undirected
weighted graphs. But, it does not work for the graphs with negative cycles (where the sum of the

edges in a cycle is negative).

Let the vertices of G be V = {1, 2........ n} and consider a subset {1, 2........ k} of vertices for some
k. For any pair of vertices i, j € V, considered all paths from i to j whose intermediate vertices are

all drawn from {1, 2....... k}, and let p be a minimum weight path from amongst them,

% Dr. Somesh Kumar

Prof. & Head, CSE
M@tad;bad Institute of Technology

Moradabad-244001

The Floyd-Warshall algorithm exploits a link between path p and shortest paths from i to j with
all intermediate vertices in the set {1, 2....... k-1}. The link depends on whether or not k is an

intermediate vertex of path p.

[f k is not an intermediate vertex of path p, then all intermediate vertices of path p are in the sect

[f k is an intermediate vertex of path p, then we break p down into i — k — j.

Let di{® be the weight of the shortest path from vertex i to vertex j with all intermediate vertices

in the set {1, 2....... k}.

A recursive definition is given by

Algorithm or Pseudocode of Warshall’s algorithm

Create a distance matrix, D, that will describe the distances between vertices. W is a weight
matrix of given graph.

1. n—rows [W].
DV e— W
. fork«<1ton

do forj«1ton
dO dij(k) — min (dij(k-l),dik(k-1)+dkj(k-l))

: return D™ //?/\ A/

Dr. Somesh Kumar
Prof. & Head, CSE
Moradabad Institute of Technology
Moradabad-244001

2
3
4. dofori«1ton
5
6
7

79

(98]

L

Viva Voce Questions

What is warshall’s algorithm?

What is the use of warshall’s élgorithm‘?

Which algorithm solves all pair shortest path?

What is the difference between warshall’s algorithm and dijkstra’s algorithm?

What is the time complexity of warshall's algorithm?

L

Dr. So esh K
Prof. & Head, CSEumar

Moradabagd Institute of T
Morada bad-244001 echnology

80

