

B.TECH (SEM V) THEORY EXAMINATION 2020-21 **GEOTECHNICAL ENGINEERING**

Time: 3 Hours

Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \ge 10 = 20$

Q no.	Question	Marks	CO		
a.	Explain the process of soil formation. Differentiate between residual and transported soil.	2	CO1		
b.	Derive the formula between soil moisture content (w), degree of saturation (S), specific gravity (G) and void ratio €.	2	CO1		
c.	What are the factors affecting the permeability of soils?	2	CO2		
d.	What do you understand by the term "flow net"?	2	CO2		
e.	Define total stress, neutral stress and effective stress.	2	CO3		
f.	Define consolidation. How it is differ from compaction?	2	CO3		
g.	List the assumptions made in Boussinesq's theory.	2	CO4		
h.	How do you define "failures" in soils?	2	CO4	N	
i.	What are the different types of earth pressures?	2	CO5	<u>`</u> ?)	
j.	What are the assumptions in Rankine's theory?	2	CO5		
SECTION B					
2.	Attempt any <i>three</i> of the following:	15		_	
Q no.	Question	Marks	CO		
a.	A natural deposit has bulk unit weight of 18.5 kN/m ³ and water content of	10	CO1		

SECTION B

2. Attempt any *three* of the following:

Q no.	Question	Marks	СО
a.	A natural deposit has bulk unit weight of 18.5 kN/m ³ and water content of	10	CO1
	5%. Calculate the amount of water required to be added to 5 m^3 constant.		
	Also, find the degree of saturation. Assume $G=2.65$.		
b.	Determine the neutral and effective stress at a depth of 15m below the	10	CO2
	ground surface for following conditions:		
	Water table 3m below ground surface, for the soil with properties given by		
	specific gravity = 2.65 , $e = 0.7$, average moisture content above water table =		
	5%.		
с.	Define the following terms:	10	CO3
	i. Coefficient of compressibility		
	ii. Compression index		
	iii. Coefficient of volume change		
	iv. Expansion/ swelling index		
	v. Recompression index		
d.	Analyze the Skempton's Pore Pressure coefficients. Describe how are the	10	CO4
	Pore Pressure Parameters A and B determined?		
e.	Differentiate critically the earth pressure theories of Rankine and Coulomb.	10	CO5

SECTION C

Roll No:

3. Attempt any one part of the following:

Q	Question	Marks	CO
no.			
a.	Differentiate between:	10	CO1
	i. Liquidity index and consistency index		
	ii. Flow index and toughness index		
	iii. Plasticity and consistency		
	iv. Activity and sensitivity.		
b.	Write the importance of the classification of soils? Discuss in brief with the	10	CO1
	help of a neat sketch classification of fine-grained soils as per Indian Standard		
	Classification System of soils. Also, give the significance of D_{10} , D_{30} and D_{60} .		

4. Attempt any one part of the following:

Q no.	Question	Marks	СО	
a.	A falling head permeability test was performed on a sample of a clear	10	CO2	
	uniform sand. One minute was required for the initial head of 100cm to fall			
	to 50cm in the standpipe of cross-sectional area of 1.50cm ² . If the sample			
	was 4cm dia and 30 cm long, calculate the coefficient of permeability of			
	sand.			N
b.	Explain quick sand condition. Give the expression for critical hydraulic	10	CO2	$\cdot 0$
	gradient along with its significance.			
5.	Attempt any <i>one</i> part of the following:		2X	V

Attempt any one part of the following 5.

Q no.	Question	Marks	ĊO	
a.	Illustrate the assumptions of the Terzaghi's theory for calculating the rate of 1-D consolidation and prove that: $\frac{\partial u}{\partial t} = c_v \cdot \frac{\partial^2 u}{\partial z^2}.$	10	CO3	
b.	Compare standard Proctor test and modified Proctor test.	10	CO3	

Attempt any one part of the following: 6.

6.	Attempt any <i>one</i> part of the following:		
Q no.	Question	Marks	CO
a.	Discuss in detail the Mohr-Coulomb's theory of shear failure of soils.	10	CO4
b.	Describe tri-axial shear test. What are its advantages and disadvantages?	10	CO4

7. Attempt any one part of the following:

Q no.	Question	Marks	CO
a.	What are the basic mode of failure of an earth retaining structure? Briefly, outline the remedial measures that can be undertaken against such failures?	10	CO5
b.	 A 5m high rigid retaining wall has to retain the soil having the following properties: G= 2.68, μ=0.36, e=0.74 and Φ= 30° i.Plot the distribution of lateral Earth pressure for the wall. i.Determine the magnitude and point of resultant thrust. i.Compute the percentage change in lateral thrust if the water table rises from a great depth to the top of the backfill. 	10	CO5