

Roll No:

B. TECH (SEM-V) THEORY EXAMINATION 2020-21 **HEAT & MASS TRANSFER**

Time: 3 Hours

Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably. **SECTION A**

Attempt all questions in brief. 1.

 $2 \ge 10 = 20$

Q no.	Question	Marks	CO	
a.	What are the limitations of Fourier's law?	2	1	
b.	Explain the various modes of heat Transfer.	2	1	
c.	Why are fins installed on electric motor?	2	3	
d.	State the assumption of lumped system.	2	2	
e.	Explain the Newton's law of cooling.	2	1	
f.	Explain the different parameter which effect thermal boundary layer thickness.	2	4	
g.	Show the physical significance of following dimensionless numbers. (i) Gasthof number (ii) Reynold number	2	4	
h.	Define the Following: (i) Irradiation, (ii) Radiosity	2	5	
i.	Explain the concept of black body.	2	5	N
j.	Define the term "Overall heat transfer coefficient".	2	6	^N S
	SECTION B		A	
2.	Attempt any <i>three</i> of the following:	5		_
0 20	Question	Morka	CO	1

SECTION B

2. Attempt any three of the following:

s CO 1 2
2
2
2
2
2
2
2
4
5
1

1 | Page

Roll No:

SECTION C

Attempt any one part of the following: 3.

Q no.	Question	Marks	CO
a.	Calculate the rate of heat flow through the wall of a refrigerated van of	10	1
	1.5 mm of steel sheet at outer surface, 100 mm plywood at the inner		
	surface and 2 cm of glass-wool in between, if the temperatures of the		
	inside and outside surfaces are -15°C and 24°C respectively. Take		
	thermal conductivities of steel, glass-wool and plywood as 23.2 W/m°C,		
	0.014 W/m°C and 0.052 W/m°C respectively.		
b.	What is thermal diffusivity? What will be your interpretation if its value	10	1
	is high or low?		

4. Attempt any one part of the following:

Q no.	Question	Marks	CO	
a.	Explain the term fin efficiency and fin effectiveness. How do we decide	10	3	
	whether the fins are required or not for a surface?			
b.	One end of a long rod, 30 mm in diameter, is inserted into the furnace	10	3	
	with the other end projecting in the outside air. After the steady state is			
	reached, the temperature of the rod is measured at two points 150 mm			1
	apart and found to be 140°C and 100°C. The atmospheric air			0
	temperature is 30°C. If the heat transfer coefficient is 60 W/m ² °C,			
	determine the thermal conductivity of the rod.		\mathcal{N}	
		0	X	
5.	Attempt any one part of the following:	's.'		

5. Attempt any one part of the following:

		\sim	
Q no.	Question	Marks	CO
a.	Air at 30°C and at atmospheric pressure flows at a velocity of 2.2 m/s	10	4
	over a plate maintained at 90°C. The length and the width of the plate		
	are 900 mm and 450 mm respectively. Using exact solution, calculate		
	the heat transfer rate from, (i) first half of the plate, (ii) full plate, and		
	(iii) next half of the plate. The properties of air at mean bulk temperature		
	$(90+30)/2 = 60^{\circ}$ C are:		
	$\rho = 1.06 \text{ kg/m3}, \mu = 7.211 \text{ kg/hm}, \upsilon = 18.97 \text{ x } 10^{-6} \text{ m2/s}, \Pr = 0.696, \text{ k}$		
	$= 0.02894 \text{ W/m}^{\circ}\text{C}$		
b	A hot plate 1 m x 0.5 m at 130°C is kept vertically in still air at 20°C.		4
	Find:		
	(i) Heat transfer coefficient,		
	(ii) Initial rate of cooling the plate in °C/min.		
	(iii) Time required for cooling plate from 180°C to 80°C if the heat		
	transfer is due to convection only Mass of the plate is 20 kg and cp =		
	400 J/kg K.		
	Assume 0.5 m side is vertical and that the heat transfer coefficient		
	calculated in (i) above remains constant and convection takes place from		
	both sides of the plate. Take properties of air at 75° C as: c =1007 J/kg		
	°C, $\rho = 1.07 \text{ m2/s}$; k = 0.029 J/kg K; v = 19.1 x 10-6 m2/s.		
	Use correlation as $NuL = 0.59(Gr.Pr)1/4$ for (104 <gr.pr<109)< td=""><td></td><td></td></gr.pr<109)<>		

Roll No:

6. Attempt any *one* part of the following:

Q no.	Question	Marks	CO
a.	A square room $3m \times 3m$, has a floor heated to 270C and has a ceiling at 100C. The walls are assumed to be perfectly insulated. The height of the	10	5
	room is 2.5 m. The emissivity of all the surfaces is 0.8. Determine the following:		
	 (i) The net heat interchange between the floor and the ceiling (ii) The wall temperature 		
	Assume ceiling to floor shape factor as 0.25.		
b.	Consider two large parallel plates one at $T_1=727^0$ C with emissivity $\epsilon_1=0.8$ and other at $T_2=227^0$ C with emissivity $\epsilon_2=0.4$. An aluminum radiation shield with an emissivity, $\epsilon_s=0.05$ on both sides is placed between the plates. Calculate the percentage reduction in heat transfer rate between the two plates as a result of the shield. Use $\sigma = 5.67 \times 10^{-8}$ W/m ² K ⁴	10	5

7. Attempt any *one* part of the following:

Q no.	Question	Marks	CO	
a.	Define effectiveness of a heat exchanger. Derive an expression for	10	4	\cdot
	the effectiveness of a double pipe parallel flow heat exchanger. State			$\overline{\ }$
	the assumptions made.		\sim	•
b.	Explain the following with neat sketch:	10	4	
	(i) Film wise condensation.	.6.		
	(ii) Define Drop wise condensation.	5		
	AKTU - 2021 1921 11			
	21-4-60-1			