B. TECH. (SEM I) THEORY EXAMINATION 2019-20 MATHEMATICS-I

Time: 3 Hours

b.

Printed Page 1 of 2

Paper Id:

Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt *all* questions.

199103

Q. No.	Question	Marks	CO
a.	Show that vectors $(1, 6, 4)$, $(0, 2, 3)$ and $(0, 1, 2)$ are linearly independent.	2	1
b.	Define Lagrange's mean value theorem.	2	2
c.	If $u = x(1 - y)$, $v = xy$, find $\frac{\partial(u, v)}{\partial(x, y)}$.	2	3
d.	Show that vector $\vec{V} = (x+3y)\hat{\imath} + (y-3z)\hat{\jmath} + (x-2z)\hat{K}$ is solenoidal.	2	5
e.	Find the value of 'b' so that rank of $A = \begin{bmatrix} 2 & 4 & 2 \\ 3 & 1 & 2 \\ 1 & 0 & b \end{bmatrix}$ is 2.	2	1
f.	Evaluate $\int_{0}^{2} \int_{0}^{1} (x^{2} + 3y^{2}) dy dx$.	2	4
g.	Find grad \emptyset at the point (2, 1, 3) where $\emptyset = x^2 + yz$	2	5
h.	If $u = \cos^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$, then find the value of $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y}$.	2	3
i.	Find $\frac{du}{dt}$ if $u = x^3 + y^3$, $x = a \cos t$, $y = b \sin t$.	2.	3
j.	Find the area lying between the parabola $y = 4x - x^2$ and above the	2	4
-	line $y = x$. SECTION B		
2.	Attempt any <i>three</i> of the following:		
Q. No.	Question	Marks	СО
a.	Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 4 & 0 & 1 \\ 0 & 1 & 2 \\ 1 & 0 & 1 \end{bmatrix}$ and	10	1
	hence find A^{-1} .		

If
$$y = e^{m\cos^{-1}x}$$
, prove that $(1 - x^2)y_{n+2} - (2n+1)xy_{n+1} - 10 = 2$
 $(n^2 + m^2)y_n = 0$. Hence find y_n when $x = 0$.

c. If
$$u^3 + v^3 + w^3 = x + y + z$$
, $u^2 + v^2 + w^2 = x^3 + y^3 + z^3$ and
 $u + v + w = x^2 + y^2 + z^2$, then show that $\frac{\partial(u, v, w)}{\partial(x, y, z)} = \frac{(x - y)(y - z)(z - x)}{(u - v)(v - w)(w - u)}$. 10 3
Evaluate the integral by changing the order of integration: $L =$

d. Evaluate the integral by changing the order of integration:
$$I = 10$$
 4
 $\int_0^1 \int_{x^2}^{2-x} xy \, dy \, dx.$

e. Verify Stoke's theorem for the vector field
$$F = (x^2 - y^2)\hat{i} + 2xy\hat{j}$$

e. integrated round the rectangle in the plane $z = 0$ and bounded by the 10 5 lines $x = 0, y = 0, x = a, y = b$.

SECTION C

Printed Page 2 of 2 Sub Code:K					
Paper	Id: 199103 Roll No:				
I					
3.	Attempt any <i>one</i> part of the following:				
Q. No.	Question	Marks	CO		
a.	For what values of λ and μ the system of linear equations:				
	x + y + z = 6				
	$x + 2y + 3z = 10$ $2x + 3y + \lambda z = \mu$	10	1		
	has (i) a unique solution (ii) no solution (iii) infinite solution				
1	Also find the solution for $\lambda = 2$ and $\mu = 8$.				
b.	$\begin{bmatrix} 1 & 3 & 4 & 2 \\ 2 & -1 & 3 & 2 \end{bmatrix}$				
	Find the rank of the matrix $A = \begin{bmatrix} 2 & -5 & 2 \\ 3 & -5 & 2 & 2 \end{bmatrix}$ by reducing it to normal	10	1		
	L6-386]				
	lorm.				
4	Attempt any <i>and</i> part of the following:				
T. O. No	Question	Marks	CO		
Q. NO. a	Verify the Cauchy's mean value theorem for the function e^x and e^{-x} in	Ivia KS	co		
u.	the interval $[a, b]$. Also show that 'c' is the arithmetic mean between a	10	2		
	and b.				
b.	Trace the curve $r^2 = a^2 \cos 2\theta$.	10	2	\sim	
5	Attempt any are part of the following:		. N		
J.	Attempt any one part of the following		R	•	
Q. NO.	Question $1 \frac{\partial u}{\partial u} = 1 \frac{\partial u}{\partial u} = 1 \frac{\partial u}{\partial u} = 1 \frac{\partial u}{\partial u}$	Marks	CO		
a.	If $u = f(2x - 3y, 3y - 4z, 4z - 2x)$, prove that $\frac{1}{2} \frac{1}{\partial x} + \frac{1}{3} \frac{1}{\partial y} + \frac{1}{4} \frac{1}{\partial z} = \frac{1}{2}$	10	3		
h	0. Find the volume of the largest restangular peralleleningd that can be				
υ.	Find the volume of the largest rectangular parameteripted that can be insering to the fitness $x^2 + y^2 + z^2 = 1$	10	3		
	inscribed in the ellipsoid $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} = 1.$				
6.	Attempt any one part of the following:				
Q. No.	Question	Marks	СО		
a.	Evaluate $\iint (x + y)^2 dx dy$, where R is the parallelogram in the xy- plane with vertices $(1, 0)$ $(2, 1)$ $(2, 2)$ $(0, 1)$ using the transformation	10	1		
	$u = x + y, \ v = x - 2y.$	10	4		
b.	Find the volume of the region bounded by the surface $y = x^2$, $x = y^2$	10	1		
	and the planes $z = 0$, $z = 3$.	10	4		
7.	Attempt any <i>one</i> part of the following:				
Q. No.	Question	Marks	CO		
a.	Verify the divergence theorem for $\vec{F} = 4xz\hat{\imath} - y^2\hat{\jmath} + yz\hat{K}$ taken over	10	5		
h	the rectangular parallelepiped $0 \le x \le 1$, $0 \le y \le 1$, $0 \le z \le 1$.		-		
υ.	ring the directional derivative of $\psi(x, y, z) = x^2yz + 4xz^2$ at (1, -2, 1) in the direction of $2\hat{i} = \hat{i} - 2\hat{k}$. Find also the greatest rate of increase of	10	5		
	\emptyset .	10	5		