Sub Code:KEC303

Printed Page	l of 3

Paper Id: 130323

Roll No:

B.TECH

(SEM-III) THEORY EXAMINATION 2019-20 **NETWORK ANALYSIS & SYNTHESIS**

Time: 3 Hours

Total Marks: 100

Note: 1 Attempt all Sections. If require any missing data: then choose suitably

1.	Attempt <i>all</i> questions in brief. 2	x 10 = 20
Qno.	Question	Marks
a.	Explain the concept of Complex Frequency.	2
b.	Define "Transfer function" of a network.	2
c.	State two properties of the R-C driving point Impedance function.	2
d.	Find the Laplace transform of	2
	$\mathbf{x}(t) = e^{-at} \sin \omega_o t$	
e.	Find Current in 10ohm resistor as shown in fig:	2
	$2 \mathbf{A} + \mathbf{A}$	
f.	Draw the Dual Circuit of Parallel RLC circuit with Current Source.	2
g.	What are the Dependent & Independent terms in the Z- parameter?	2
h.	State Compensation Theorem.	2
i.	Give examples of Active & Passive elements in a Network.	2
i.	Draw the Frequency Resonance Curve of Parallel Resonance R-L-C Circuit.	2

SECTION B

2. Attempt any *three* of the following:

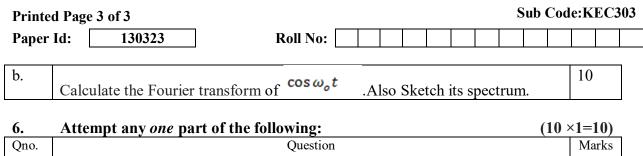
. <u> </u>		
Qno.	Question	Marks
a.	Find Y and Z parameters of the networks as shown in fig $+ \circ + \circ$	10
b.	Explain Low pass Filter, High Pass Filter, Band Pass Filter, Band Reject Filter.	10
с.	Find the current i_2 for $t > 0$ in the circuit shown below as shown in fig i_2 i_1 i_1 i_2 i_1 i_2 i_1 i_2 i_3 $i_4 \Omega$ $i_1 2 \Omega$ $i_8 H$	10

1 | Page

Printed Page 2 of 3			Sub					ub Co	Code:KEC303			
Paper Id:		130323	Roll No:									
d.	Expla	ain Maximum Power	Transfer Theorem	relate	d to 1	AC (Circ	uits.			10	
e.	Calcu	Calculate the inverse Laplace Transform h(t) of given transfer function					10					
	H	$I(s) = \frac{s^2 + s^2}{(s+1)(s^2)}$	$\frac{5s-9}{-2s+10)}$									

SECTION C

Attempt any *one* part of the following:


3.	Attempt any <i>one</i> part of the following: (10)	×1=10)
Qno.	Question	Marks
a.	A Series R-L circuit has constant voltage V applied at t=0. At what time does $V_R=V_L$ happens.	10
b.	A periodic waveform whose one period is shown in fig. Determine the trigonometric Fourier series coefficients. $\begin{array}{c} x(t) \\ 1 \\ \hline \\ -\pi \\ \hline \\ -1 \\ \end{array} t$	10
4.	Attempt any <i>one</i> part of the following: (10.	×1=10)

4.	Attempt any <i>one</i> part of the following: (1)	0 ×1=10)
Qno.	Question	Marks
a.	Calculate the Inverse Laplace Transform using Convolution Integral.	10
	$F(s) = \frac{1}{(s+a)(s+b)}$	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
b.	For the Continuous time periodic signal	10
	$x(t)=1+\cos\frac{2\pi}{3}t+4\cos\frac{5\pi}{3}t$	
	Determine the Fundamental frequency $w_0$ & exponential Fourier series co- efficients.	

5.	Attempt any <i>one</i> part of the following: (10 ×			
Qno.	Question	Marks		
a.	For the given circuit in fig, the value of given voltage $V_0$ across 40hm resistance. $10mA \bigoplus \begin{array}{c} 2k\Omega \swarrow & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & $	10		

 $\overline{}$ 

## 2 | Page



Qno.	Question	Marks
a.	Calculate the Short Circuit Admittance Parameter of the given circuit in fig	10
	$\begin{array}{c} 2\Omega \\ 1\Omega \\$	
b.	Prove that for a symmetric network $Z_{11}=Z_{22}$ , where $Z_{11}$ & $Z_{22}$ are Z-parameters.	10

7.	Attempt any <i>one</i> part of the following: (10 ×1=10)	
Qno.	Question Marks	$Q_{2}$
a.	Calculate the impedance Z(s), if Driving point impedance Z(s), of a network has pole-zero location as shown in fig . Also Z(0)=3	Ŷ,
b.	A Practical DC Current source provides 20kW to a 50 load & 20kW to a 200 10	
	load. Calculate the maximum power that can draw from it.	