Printed	Page 1 of 1 Sub Code: KEE3
Paper I	d: 120321 Roll No:
T	B.TECH (SEM III) THEORY EXAMINATION 2019-20 ELECTROMAGENETIC FIELD THEORY
	. Attempt all Sections. If require any missing data; then choose suitably. SECTION A
	Attempt all questions in brief. $2 \times 10 = 20$
	xplain the significance of continuity equation in a good conductor.
	xplain parameters of a transmission line.
	xplain Ampere's circuital law for magneto statics.
	xplain relaxation time constant.
	hywork done on a charge is zero when it is moved in a close path.
. E	xplain Gauss's law for electrostatics.
, E	xplain behaviour of a conductor at high frequency.
. E	xplain refraction coefficient and reflection time constant in contest to EM wave propagation.
. E	xplain Poynting vector.
. W	rite an equation for an EM wave propagating in a conductor.
I	SECTION B
2.	Attempt any three of the following: 10x3=30
ι.	Convert a point P (4,-3, 6) and a vector $\mathbf{R} = z \mathbf{a}_x + y \mathbf{a}_z$ into cylindrical co-ordinate systems.
).	Derive an expression for electric field intensity in space due to infinite length uniformly Charged wire.
).	Derive an expression for magnetic field intensity in space due to current sheet having current density $\mathbf{K}\mathbf{a}_{x}$ A/m.
1.	Derive expressions of Voltage and Current in a Transmission Line.
2.	Write and explain all forms of all Maxwell's equation in detail.
	SECTION C
3.	Attempt any <i>one</i> part of the following: $10 \times 1 = 10$
n. D.	Explain and prove Stroke's theorem. Explain all possible forms of surface vector, line vector and volume integral in Spherical system.
	Attempt any <i>one</i> part of the following: 10 x 1= 10
1.	Derive an expression for capacitance of a spherical shaped capacitor.
) .	Derive and explain Boundary conditions for static electric fields.
	Attempt any <i>one</i> part of the following: 10 x 1= 10
ì.	Derive an expression for magnetic field of a coaxial cable.
).	Explain Biot Savert's law for magnetic fields. How this concept can be used to determine Magnetic field in space due to a close loop current carrying wire.
	Attempt any <i>one</i> part of the following: $10 \times 1 = 10$
ì.	Explain the concept of Displacement constant in an electrical circuit. Also determine the
).	condition when conduction current becomes equal to displacement current. Derive and explain differential form of Faraday's law of electromagnetic induction in vector form.
7.	Attempt any <i>one</i> part of the following: $10 \times 1 = 10$
7 . a.	Derive all expressions of a EM Wave like attenuation constant, phase constant and intrinsic impedance when it is propagating through a free space.

Derive an expression for characteristic impedance, input impedance of a transmission line.