Sub Code:KEE303

Printed Page 1 of 3 120323 Paper Id:

Roll No:

B TECH (SEM-III) THEORY EXAMINATION 2019-20 **BASIC SIGNALS & SYSTEMS**

Time: 3 Hours

Total Marks: 100

 $2 \ge 10 = 20$

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

Attempt all questions in brief. 1.

Qno.	Question	Marks	С	
			0	
a.	Define signal. What are various types of signals?	2	1	
b.	Differentiate between Invertible and Non-Invertible system.	2	1	
c.	State and explain sampling theorem.	2	2	
d.	State and prove time shifting property of Fourier Series.	2	2	ĺ
e.	Deduce inverse laplace transform of 1/s(s+4).	2	3	
f.	Drive Laplace transform of sinot.	2	3	
g.	What is the significance of state variable?	2	4	N
h.	What is the condition for the stability of a system?	2	4	
i.	Drive time reversal property of z-transform.	2	5	*
j.	Find the z transform of $f(nT) = e^{-anT}$; $a > 0$, $n \ge 0$	2 9	5	
	SECTION B	20.		-

ΓΙΟΝ Β

2.	Attempt any three of the following:	10X3=3	30
Qno.	Question	Marks	СО
a.	find even and odd component of the following signals (i) $x(t) = \cot + \sin t + \cot sint$ (ii) $x(n) = \{1,2,1,4,5,0,3\}$	10	1
b.	Obtain the trigonometric Fourier series for the half wave rectified sine wave.	10	2
с.	Calculate the Laplace transform for the function $F(t) = e^{-at}$ sinhbt.	10	3
d.	Obtain the state model for the electric network shown in figure. Select i_L and Vc as state variables.	10	4
e.	State and prove the time delay theorem and Parsavel's theorem of Z-transform.	10	5

Printed Page 2 of 3							S	Sub	Cod	e:K	EE3	03
Paper Id:	120323	Roll No:										

SECTION C

3. Attempt any *one* part of the following:

10X1=10

Qno.	Question	Marks	CO		
a.	Sketch the function				
	(i) $x(t)=u(t)+2u(t)+3u(t-4)-u(t-5)$				
	(ii) $x(t) = r(t+1)-r(t)+r(t-2)$				
b.	Obtain F-V and F-I analogous system of mechanical system shown in	10	1		
	figure.				
	5				

4. Attempt any *one* part of the following:

10X1=10

Qno.	Question	Marks	CO	
a.	Explain the trigonometric and exponential form of Fourier series	10	2	N
	representation of periodic signal. Find the Fourier transform of given			
	signal shown in fig.			
			NX	•
		9		
		0.		
	CX CX			
b.	State and prove duality property of Fourier transform. Find the inverse	10	2	
	fourier transform of,			
	$\nabla(\omega) = (2\cos\omega, \omega < \pi$			
	$\Lambda(\omega) = \{0, \omega > \pi$			
-		10		J

2.

5. Attempt any *one* part of the following:

10X1=10

Qno.	Question	Marks	СО
a.	For a transfer function H (s) = $(s+10)/(s^2 + 3s + 2)$. Find the response	10	3
	due to input $x(t) = Sin2(t) u(t)$.		
b.	Find the inverse Laplace transform of given function by using	10	3
	convolution theorem (i) $x(s) = 1/(s^2+a^2)^2$ (ii) $x(s) = s/(s+1)(s+2)$		
6	Attempt any <i>one</i> part of the following: 10X1=	10	

6. Attempt any *one* part of the following:

Qno.	Question	Marks	СО
a.	Consider the state equation shown below.	10	4
	$\begin{bmatrix} \cdot \\ x_1 \\ \cdot \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$ Determine the state transition equation x(t) when the input is unit step and x_1(0)= 1, x_2(0)= 2.		
b.	Explain state transition matrix, its physical significance and properties.	10	4

2 | Page

Printed Page 3 of 3							5	Sub	Cod	e:K	EE3	03
Paper Id:	120323	Roll No:										

7.	Attempt any <i>one</i> part of the following: 10X1=				
Qno.	Question	Marks	CO		
a.	State and prove time shifting property of Z-transform. Also find the inverse Z-transform of given function using convolution theorem. $x_{1}(z) = \frac{1}{1 - az^{-1}}, ROC : [z] > [a]$ $x_{2}(z) = \frac{1}{1 - z^{-1}}, ROC : [z] > [1]$	10	5		
b.	For the discrete system described by the difference equation y(n) = 0. 6y(n-1)-0.08y(n-2)+x(n). Determine: (i)The unit sample response sequence, h(n), (ii)The step response.	10	5		

AMMESHAGARWAL 1000ec201909:02:351112.09.24A.M