

B. TECH (SEM-V) THEORY EXAMINATION 2020-21 MACHINE LEARNING TECHNIQUES

Time: 3 Hours

Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably. SECTION A

1.	Attempt <i>all</i> questions in brief.			
Qno.	Question	Marks	СО	
a.	Explain the concept of machine learning.	2	1	
b.	Compare ANN and Bayesian networks.	2	4	
c.	What is the difference between linear and logistic regression?	2	2	
d.	Discuss support vectors in SVM?	2	2	
e.	Discuss overfitting and underfitting situation in decision tree learning.	2	3	
f.	What is the task of the E-step of the EM-algorithm?	2	2	
g.	Define the learning classifiers.	2	2	
h.	What is the difference between machine learning and deep learning?	2	1	
i.	What objective function do regression trees minimize?	2	2	
j.	What is the difference between Q learning and deep Q learning?	2	5	

SECTION B

2. Attempt any *three* of the following:

Qno.	Question					CO
a.	Apply KNN for following dataset and predict class of test example (A1=3, A2=7).Assume K=3					3
	A1	A2	Class		15	
	7	7	True		5	
	7	4	True	Ń		
	3	4	False			
	1	4	True			
	5	3	False			
	6	3	True			
b.	Describe the Kohonen Self-Organizing Maps and its algorithm.					4
c.	Explain the various learning models for reinforcement learning.					5
d.	Explain the role of genetic algorithm? Discuss the various phases					5
	considered in genetic algorithm.					
e.	Describe BPN algorithm in ANN along with a suitable example.					4

SECTION C

3. Attempt any *one* part of the following:

Algorithms.

Qno.	Question	Marks	CO
a.	Why SVM is an example of a large margin classifier? Discuss the different	10	2
	kernels functions used in SVM.		
b.	Explain the relevance of CBR. How CADET tool employs CBR?	10	3
4.	Attempt any <i>one</i> part of the following:		
Qno.	Question	Marks	CO
a.	Discuss the applications, properties, issues, and disadvantages of SVM.	10	2
b.	Explain the Confusion Matrix with respect to Machine Learning	10	1

No

No

Roll No:

Attempt any *one* part of the following: 5. Illustrate the operation of the ID3 training example. Consider a. information gain as attribute measure. PlayTennis: training examples Outlook Temperature Humidity Wind Day PlayTennis D1 Sunny Hot High Weak D2 Sunny Hot High Strong

6.	Attempt a	ny <i>one</i> part	of the fol	lowing:			
b.	Describe M	Iarkov Decis	sion Proce	ss in reinfor	cement l	earning.	10 5
				OF			24
		u					. <u>.</u>
	D14	Rain	Mild	High	Strong	No	
	D13	Overcast	Hot	Normal	Weak	Yes	
	D12	Overcast	Mild	High	Strong	Yes	
	D11	Sunny	Mild	Normal	Strong	Yes	
	D10	Rain	Mild	Normal	Weak	Yes	
	D9	Sunny	Cool	Normal	Weak	Yes	
	D8	Sunny	Mild	High	Weak	No	
	D7	Overcast	Cool	Normal	Strong	Yes	
	D6	Rain	Cool	Normal	Strong	No	
	D5	Rain	Cool	Normal	Weak	Yes	
	D4	Rain	Mild	High	Weak	Yes	
	D3	Overcast	Hot	High	Weak	Yes	

0	5

0.	Attempt any one part of the following.		
Qno.	Question	Marks	СО
a.	What is instance based learning? How Locally Weighted Regression is different from Radial basis function networks?	10	3
b.	How is Bayes theorem used in machine learning? How naive Bayes algorithm is different from Bayes theorem?	10	2
7.	Attempt any <i>one</i> part of the following:		

Attempt any *one* part of the following: Qno. Question Marks CO Compare regression, classification and clustering in machine learning a. along with suitable real life applications? Given below is an input matrix named I, kernel matrix, calculate the b. Convoluted matrix C using stride =1 also apply max pooling on C. Input Matrix I Kernel Matrix