Printed Pages: 03

Paper Id	1	3	0	3	
----------	---	---	---	---	--

B. TECH THEORY EXAMINATION (SEM-III) 2018-19 NETWORK ANALYSIS & SYNTHESIS

Time : 3 Hours

Note : Be precise in your answer. In case of numerical problem assume data wherever not provided

SECTION – A

1. Attempt all parts of the following questions:

- (a) With the help of mathematical expressions and characteristics curve, explain unit step and impulse signals used to analyse the network?
- (b) Draw Pole-Zero diagram for following impedance function:

4

1

$$Z(s) = \frac{(s+1)}{(s^2 + 2s + 2)}$$

- (c) State initial value and final value theorem.
- (d) Explain the concept of transfer function.
- (e) State Thevenin's theorem.
- (f) What is the condition for reciprocity of z-parameter and h-parameter?
- (g) Describe the various elements of a network.
- (h) Define Positive real function.
- (i) What is unilateral Laplace transform? Give the condition for the existence of the Laplace transform.
- (j) Give the statement of superposition theorem.

SECTION B

2. Attempt any three parts of the following questions:

- (a) Explain Convolution integral and convolution theorem.
- (b) Determine the Laplace transform of the waveform shown below: -

(d) Find the driving point impedance $Z_{11}(s)$, transfer impedance $Z_{21}(s)$ and voltage transfer function $G_{12}(s)$ for the circuit shown in the figure below.

36.77.14

2×10=20

3×10=30

Max. Marks : 100

SUB CODE: NEC301

Roll No.

(e) Write down the properties of Positive real function. Find if the function $Z(s) = \frac{2s^2+5}{s(s^2+1)}$ is positive real or not.

SECTION C

3. Attempt any one part of the following question:

(a) The switch in the circuit of the given figure has been closed for a very long time. It opens at t=0.

1×10=10

1×10=10

Find $v_{C}(t)$ for t > 0 using differential equation approach.

(b) Design first order high pass active filter and draw its frequency response.

4. Attempt any one part of the following question:

(a) Determine the h-parameters of the network given in the figure below:-

(b) If
$$I(s) = \frac{s^2 + 5s + 9}{s^3 + 5s^2 + 12s + 8}$$
; find i(t).

NITIN AGARWAL | 29-Dec-2018 09:22:37 | 223.196.77.14

5. Attempt any one part of the following question:

(a) Find the range of values of "a" so that following function is a Hurwitz:

$$P(s) = s^4 + s^3 + as^2 + 2s + 3$$

(b) What are active filters? List and explain types of active filters.

6. Attempt any one part of the following question:

(a) An impedance function is given by

$$Z(s) = \frac{2(s+1)(s+3)}{(s+2)(s+6)}$$

Find the R-C representation of (i) Foster I and (ii) Cauer I form.

(b) Synthesize $Y_{21}(s) = \frac{s^3}{s^3 + 3s^2 + 3s + 2}$ with 1 Ω termination.

7. Attempt any one part of the following question:

(a) What are the properties of R-L impedance function? For the network shown in the figure below: -196.77.14

1Ω

 1Ω

Find out the Laplace transform function IR2(s) and then using initial and final value theorems find out the initial and the final value of current $i_{R2}(t)$, through R₂. Verify the results by solving for iR2(t).

 $1 \times 10 = 10$

1×10=10

1×10=10