

Roll No. \square

B. TECH
 THEORY EXAMINATION (SEM-III) 2018-19 NETWORK ANALYSIS \& SYNTHESIS

Time: 3 Hours
Max. Marks : 100
Note : Be precise in your answer. In case of numerical problem assume data wherever not provided

SECTION - A

1. Attempt all parts of the following questions:
(a) With the help of mathematical expressions and characteristics curve, explain unit step and impulse signals used to analyse the network?
(b) Draw Pole-Zero diagram for following impedance function:

$$
Z(s)=\frac{(s+1)}{\left(s^{2}+2 s+2\right)}
$$

(c) State initial value and final value theorem.
(d) Explain the concept of transfer function.
(e) State Thevenin's theorem.
(f) What is the condition for reciprocity of z-parameter and h-parameter?
(g) Describe the various elements of a network.
(h) Define Positive real function.
(i) What is unilateral Laplace transform? Give the condition for the existence of the Laplace transform.
(j) Give the statement of superposition theorem.

SECTION B

2. Attempt any three parts of the following questions:
(a) Explain Convolution integral and convolution theorem.
(b) Determine the Laplace transform of the waveform shown below:

(c) What are two port networks? Explain various types of interconnections of two port network.
(d) Find the driving point impedance $Z_{11}(s)$, transfer impedance $Z_{21}(s)$ and voltage transfer function $\mathrm{G}_{12}(\mathrm{~s})$ for the circuit shown in the figure below.

(e) Write down the properties of Positive real function. Find if the function $Z(s)=\frac{2 s^{2}+5}{s\left(s^{2}+1\right)}$ is positive real or not.

SECTION C

3. Attempt any one part of the following question:
$1 \times 10=10$
(a) The switch in the circuit of the given figure has been closed for a very long time. It opens at $\mathrm{t}=0$.

Find $\mathrm{vc}(\mathrm{t})$ for $\mathrm{t}>0$ using differential equation approach.
(b) Design first order high pass active filter and draw its frequency response.

4. Attempt any one part of the following question:

(a) Determine the h-parameters of the network given in the figure below:-

(b) If $\quad I(s)=\frac{s^{2}+5 s+9}{s^{3}+5 s^{2}+12 s+8}$; find $\mathrm{i}(\mathrm{t})$.
5. Attempt any one part of the following question:
(a) Find the range of values of "a" so that following function is a Hurwitz:

$$
P(s)=s^{4}+s^{3}+a s^{2}+2 s+3
$$

(b) What are active filters? List and explain types of active filters.
6. Attempt any one part of the following question:
(a) An impedance function is given by

$$
Z(s)=\frac{2(s+1)(s+3)}{(s+2)(s+6)}
$$

Find the R-C representation of (i) Foster I and (ii) Cauer I form.
(b) Synthesize $Y_{21}(s)=\frac{s^{3}}{s^{3}+3 s^{2}+3 s+2}$ with 1Ω termination.

7. Attempt any one part of the following question:

(a) What are the properties of R-L impedance function? For the network shown in the figure below: -

$$
\frac{V_{2}}{V_{0}}=\frac{1}{2+Y}=\frac{s\left(s^{2}+3\right)}{2 s^{3}+s^{2}+6 s+1}
$$

Synthesize Y as the L-C admittance.
(b) Construct transformed network of the circuit shown in the figure below.

Find out the Laplace transform function $\mathrm{I}_{\mathrm{R} 2}(\mathrm{~s})$ and then using initial and final value theorems find out the initial and the final value of current $i_{22}(t)$, through R_{2}. Verify the results by solving for $\mathrm{i}_{\mathrm{R} 2}(\mathrm{t})$.

