Printed Page 1 of 2							S	ub (Code	e: R	CE5	601
Paper Id:	100516	Roll No:										

B TECH

(SEM V) THEORY EXAMINATION 2019-20 GEOTECHNICAL ENGINEERING

Time: 3 Hours Total Marks: 70

Notes:

• Attempt all Sections.

• Assume any missing data.

SECTION A

1. Attempt all questions in brief.

 $2 \times 7 = 14$

a.	Explain index properties of soil.
b.	What are the basic structural units of clay minerals?
c.	List the factors affecting permeability of soils.
d.	Define critical gradient.
e.	Differentiate between compression index and expansion index
f.	What are different types of slope failure?
g.	Describe various types of pile foundation.

SECTION B

2. Attempt any three of the following:

 $7 \times 3 = 21$

 and specific gravity of 2.72. The liquid limit of the clay is 58%. A structure constructed on the clay increases the overburden pressure by 10%. Estimate the consolidation settlement. d. Describe the unconfined compression test? What is its advantage over a triaxing teat? e. Using Terzaghi's theory, determine the ultimate bearing capacity of a strip footing 1.5 m wide resting on a saturated clay (c_u = 30 kN/m², φ_u =0 and γ_{sat} = 20kN/m³ at a depth of 2 m below ground level. The water table is also at a depth of 2m from the ground level. If the water table rises by 1 m, calculate the percentage reduction. 	a.	Prove that dry unit weight of soil
 b. Explain flow net. Describe its properties and its applications. c. A normally consolidated clay layer of 10m thickness has a unit weight of 20 kN/m and specific gravity of 2.72. The liquid limit of the clay is 58%. A structure constructed on the clay increases the overburden pressure by 10%. Estimate the consolidation settlement. d. Describe the unconfined compression test? What is its advantage over a triaxiate teat? e. Using Terzaghi's theory, determine the ultimate bearing capacity of a strip footing 1.5 m wide resting on a saturated clay (cu = 30 kN/m², φu = 0 and γsat = 20kN/m³ at a depth of 2 m below ground level. The water table is also at a depth of 2m from the ground level. If the water table rises by 1 m, calculate the percentage reduction. 		$\gamma_{v} = \frac{(1-n_a)G\gamma_{w}}{2}$
 c. A normally consolidated clay layer of 10m thickness has a unit weight of 20 kN/m and specific gravity of 2.72. The liquid limit of the clay is 58%. A structure constructed on the clay increases the overburden pressure by 10%. Estimate the consolidation settlement. d. Describe the unconfined compression test? What is its advantage over a triaxiate teat? e. Using Terzaghi's theory, determine the ultimate bearing capacity of a strip footing 1.5 m wide resting on a saturated clay (cu = 30 kN/m², φu = 0 and γsat = 20kN/m³ at a depth of 2 m below ground level. The water table is also at a depth of 2m from the ground level. If the water table rises by 1 m, calculate the percentage reduction. 		$\gamma_d - \frac{1}{1+e}$
 and specific gravity of 2.72. The liquid limit of the clay is 58%. A structure constructed on the clay increases the overburden pressure by 10%. Estimate the consolidation settlement. d. Describe the unconfined compression test? What is its advantage over a triaxing teat? e. Using Terzaghi's theory, determine the ultimate bearing capacity of a strip footing 1.5 m wide resting on a saturated clay (c_u = 30 kN/m², φ_u =0 and γ_{sat} = 20kN/m³ at a depth of 2 m below ground level. The water table is also at a depth of 2m from the ground level. If the water table rises by 1 m, calculate the percentage reduction. 	b.	Explain flow net. Describe its properties and its applications.
 teat? Using Terzaghi's theory, determine the ultimate bearing capacity of a strip footin 1.5 m wide resting on a saturated clay (c_u = 30 kN/m², φ_u =0 and γ_{sat} = 20kN/m³ at a depth of 2 m below ground level. The water table is also at a depth of 2m from the ground level. If the water table rises by 1 m, calculate the percentage reduction 	c.	A normally consolidated clay layer of 10m thickness has a unit weight of 20 kN/m ² and specific gravity of 2.72. The liquid limit of the clay is 58%. A structure constructed on the clay increases the overburden pressure by 10%. Estimate the consolidation settlement.
1.5 m wide resting on a saturated clay ($c_u = 30 \text{ kN/m}^2$, $\phi_u = 0$ and $\gamma_{sat} = 20 \text{kN/m}^3$ at a depth of 2 m below ground level. The water table is also at a depth of 2m from the ground level. If the water table rises by 1 m, calculate the percentage reduction	d.	Describe the unconfined compression test? What is its advantage over a triaxial teat?
in the ultimate bearing capacity.	e.	Using Terzaghi's theory, determine the ultimate bearing capacity of a strip footing 1.5 m wide resting on a saturated clay ($c_u = 30 \text{ kN/m}^2$, $\phi_u = 0$ and $\gamma_{sat} = 20 \text{kN/m}^3$), at a depth of 2 m below ground level. The water table is also at a depth of 2m from the ground level. If the water table rises by 1 m, calculate the percentage reduction in the ultimate bearing capacity.

SECTION C

3. Attempt any *one* part of the following:

 $7 \times 1 = 7$

(a)	Saturated clay has a water content of 39.3% and a mass specific gravity of 1.84.
	Determine the void ratio and the specific gravity of soil solids.
(b)	The liquid limit of clay is 64% and its plastic limit is 34%. Its natural water is 48%.
	What is the liquidity index of the soil? How do you classify the soil as per the IS
	classification?

nted Page	2 of 2									S	ub (Code	e: R	CE5	501
per Id:	100516		Roll No:												
Attem	mpt any <i>one</i> part of the following:										7 :	x 1 =	= 7		
(a)	A granular soil deposit is 7 m deep over an impermeable layer. The ground water table is 4 m below the ground surface. The deposit has a zone of capillary rise of 1.2 m with a saturation of 50%. plot the variation of total stress, pore water pressure and effective stress with the depth of deposit, $e = 0.6$ and $G = 2.65$.										of ure				
(b)	A soil sample head permeability or pipe.	90 mm higility test.	gh and 600 The head f	00 mn fell fr	n ² in or rom 5	cross 00 r	s-se nm	ction	n as 300 :	subj mm	ecte in	1500) sec	c. T	he
Attem	pt any <i>one</i> par	t of the fo	llowing:								7 :	x 1 =	= 7		
(a)	Describe stan	dard proct	or test and	the n	nodifi	ed p	roc	tor t	est.						
(b)	A saturated clay layer of 5m thickness takes 1.5 years for 50% prim consolidation, when drained on both sides. Its coefficient of volume change m 1.5 x 10 ⁻³ m ² /kN. Determine the coefficient of consolidation (in m ² /yr) and coefficient of permeability (in m/yr).									m	vis				
Attem	pt any <i>one</i> par	of the fo	llowing:								7 :	x 1 =	= 7		
(a)	(a) Explain the Skempton's pore pressure parameter							deta	ıil.						
(b)	How a slope is analyzed using Swedish circle method? Derive an expression for factor of safety.								for 1	the					
Attem	pt any <i>one</i> par	t of the fo	llowing:	10,							7	x 1 =	= 7		
(a)	(ii) Gr	t safe bear oss safe be	ms ring capaci earing capa oil pressure	acity							۸ 2	0)).		
(b)	A group of 9 used are 30 cr of clay with efficiency neg	piles, 10 in diameter unconfine	m long is u with centred compre	used are to consider	entre stre	spac ngth	cing	of	0.9 r	n. th	ie su	ibso	il co	nsi	sts

07.Jan.2020