Sub Code: RCE502 Printed Page 1 of 2

100525 Paper Id:

Roll No:

B. TECH (SEM V) THEORY EXAMINATION 2019-20 **DESIGN OF STRUCTURE I**

Time: 3 Hours Total Marks: 70

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 7 = 14$

a.	Define flexibility and stiffness coefficients.
b.	Find moment in member OA, OB and OC due to applied moment 'M' at joint
	O in fig1.
c.	Find rotation of joint 'O' due to applied moment M. Take EI and length 'L' as
	constant for all members in fig2.
d.	List three methods of structural analysis using force method concept and 3
	methods of displacement concept.
e.	State lower bound theorem.
f.	What is plastic hinge and plastic moment capacity?
g.	State Muller Breslau's principle.

SECTION B

2. Attempt any three of the following:

 $7 \times 3 = 21$

as constant and 24/EI & 12/EI
2 1/L1 & 12/L1
d by a point load
left support.
tiffening girders f the road way is r the whole span ridge. Find B.M. lso calculate the
7T
EI as constant.
ensity w/m upon
ridge. lso ca EI as co

SECTION C

3. Attempt any one part of the following:

 $7 \times 1 = 7$

(a)	Using RB as unknown find reaction in beam of fig5. Take EI as constant use
	strain energy method.
(b)	Analyze beam of fig 6 by slope deflection method if support 'C' sinks by
	10mm. Take $E=2x10^5 N/mm^2$.

4. Attempt any one part of the following:

 $7 \times 1 = 7$

- A two hinged parabolic arch of span 30m & rise 6m is loaded by two loads of magnitude 60kN each at 7.5m & 15m from left support. Find horizontal thrust & maximum positive & negative BM in arch.
- Construct ILD from BM at 4m from 'A' in the beam of fig7. (b)

Paper Id:

100525

Roll No:

 $7 \times 1 = 7$

Sub Code: RCE502

5. Attempt any one part of the following:

(a)	A uniformly distributed load of 2000 Kg/m, 6m long crosses over a girder
	simply supported at ends over a span of 10m from left to right. Calculate
	maximum BM in girder at a point 4.5m from left hand end using Influence line.
	,
(b)	A suspension cable 140 m span and 14m central dip carries a load of 1 kN/m.
	Calculate the maximum and minimum tension in the cable. Find the horizontal

- and vertical forces in each pier under the following conditions:
 - (a) If the cable passes over a frictionless rollers on top of the piers
 - (b) If the cable is firmly clamped to saddles carried in frictionless rollers on top of the piers. In each case of back stay in unlined at 30° with the horizontal.

Attempt any one part of the following: 6.

 $7 \times 1 = 7$

- Analyze the beam by stiffness matrix method as shown in fig8. (a)
- (b) Analyze the beam of fig8 by flexibility matrix method. Take Mb & Mc as unknown.

7. Attempt any one part of the following:

 $7 \times 1 = 7$

- Find shape factor of T section of fig9. (a)
- Find shape factor of triangulate section of fig10. (b)

F14-7

