<i>Ho</i> . At	<i>urs Total Marks: 70</i> tempt all Sections. If require any missing data; then choose suitably.									
A tto	SECTION Ampt all questions in brief. $2 \ge 7 = 14$									
a.	What is sensitivity analysis?									
<u>u.</u> b.	What is sensitivity unity is: What are the limitations of graphical method?									
<u>с.</u>	How would you deal with the assignment problems, where the objective									
0.	function is of maximization type?									
d.	What are the customer's behaviors in queuing system?									
e.	Explain the Dummy Activity in network diagram.									
f.	Write short note on Johnson Algorithm for n jobs and 3 machines.									
g.	How will you control the inventories of a manufacturing organization?									
• • •	SECTION B									
	mpt any three of the following: $7 \ge 3 = 21$ Solve the following linear programming problem by Simplex method:									
a.	Solve the following linear programming problem by Simplex method: $Maximize \ z = 8x + 16y$									
	subject to $x + y \le 200$									
	y ≤ 125									
	$3x + 6y \le 900$									
	and $x, y \ge 0$									
b.	Find the optimal solution of the following transportation problem in which cel									
	entries represent unit costs.									
	From To Available									
	From To Available W1 W2 W3									
	F1 4 14 8 10									
	$F_2 = 6 = 6 = 2 = 16$									
	F3 10 8 14 14 F4 2 12 4 28									
	Required 14 18 36									
c.	Describe the two person zero-sum game. Mention its basic assumptions. Solve									
	the following two person zero-sum game:									
	Player B									
	Player A I II III I 10 5 -2									
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
d.	Discuss the various inventory costs associated with the organization taking									
	suitable examples and Why?									
e.	A certain project is composed of nine activities whose time estimates are given									
	below:									
	Activity $1-2$ $1-3$ $1-4$ $2-5$ $3-5$ $4-6$ $5-6$ $6-7$ $5-7$									
	Duration 1 3 2 1 3 2 4 6 3									
	Draw the project network and find out the critical path.									

1

Printed Page 1 of 3 140725

Paper Id:

Roll No:

Sub Code:RME075

B. TECH (SEM-VII) THEORY EXAMINATION 2019-20

1 | Page

Printeo	d Page	2 of 3									Sul	b Code:RME0	75
Paper	Id:	140725		1	Roll No	0:							
SECTION C													
3.	Atter	Attempt any one part of the following: $7 \ge 1 = 7$								-			
	 (a) A company has two grades of inspectors, I and II to undertake quality consistent inspection. At least 1,500 pieces must be inspected in an 8-hour day. Gradinspector can check 20 pieces in an hour with an accuracy of 96%. Gradinspector can check 14 pieces an hour with an accuracy of 92%. Wages 												
										%. Wages of			
	grade I inspector are Rs 5 per hour while those of grade II inspector are per hour. Any error made by an inspector costs Rs 3 to the company. If t												
	are, in all, 10 grade I inspectors and 15 grade II inspectors in the company.												
	(b) Write the dual of the following problem												
(b) While the dual of the following problem Minimize $Z = 20x_1 + 16x_2$													
		$x_1 + x_2 \ge 12$											
		Subject to $2x_1 + x_2 \ge 17$											
		Bubjeet it	2	$x_1 \ge 5$									
				$_2 \ge 6$									
4.	Attempt any one part of the following: $7 \ge 1 = 7$ (a)Assign four trucks 1, 2, 3, and 4 to vacant spaces A, B, C, D and E So that												7
	(a)			d is minim		10 10		spaces	, А, Г) , C, I			
		 					N						
				ruck		20	9						
				1 2		4						2 XX	
		C	A	9 14	1	15						29.244	
		Spaces	<i>B</i> <i>C</i>	7 17 9 18		19 18					~ (\mathcal{V}	
				10 12		19					Ń	*	
			E	10 15		16							
	(b)	Using Lea	ast- Co	st method	to solv	ve ini	tial so	lution	ofth	e follo	owing	problem:	-
				Destinat	ion			á	$\left(\cdot \right)$				
		Source	D_1	D_2		D_{3}	Capa	city)				
		S_1	10	13		6	10	· .					
		<u>S</u> ₂	16	7		13	9 12	,					
		S_3	8	22	(2	8						
_		Demand		11		13	30)				- 1 -	
5.									throug	$7 \times 1 = 7$	7		
	(a) A readymade garment manufacture has to process 7 items through of production viz., cutting and sewing. The time taken for each of the												
		the different	ent stag	es is giver	n belov	v in a	approp	riate	units:				
				Item		1	2	3	4	5	6		
				Cutting Ti	me	30	120	50	20	90	110		
				Sewing Ti	me	80	100	90	60	30	10		
Find the order in which these items are to be processed through these st as to minimize the total processing time. Also calculate total elapsed to idle times.							-	-					

AKTU QP20O26 | 26-Dec-2019 13:37:43 | 117.219.244.111

eu i age	5015												
· Id:	140725	Roll No	:										
(b)	The following	g matrix represents j	playe	er A's	pay-o	off in	a t	WO	perso	n ze	ero-s	sum	
	game:												
		Player B											
		Player A		Ι	II	III							
			Ι	20	40	-80)						
			II	0	15	-20)						
			III	90	20	50							
		L L											
	Find the optim	nal strategies for the	two	playe	rs and	also	the [•]	valu	e of t	he g	game	e.	
	• •												
Atte	npt any <i>one</i> pa	Attempt any <i>one</i> part of the following: $7 \times 1 = 7$											

- Derive a single period probabilistic inventory model with instantaneous and (a) continuous demand and no set up cost.
- What is Monte Carlo Simulation? Discuss in brief. (b)

7. Attempt any one part of the following:

7 x 1 = 7 A project has the following characteristics: (a) Activity Preceding Expected Activity Preceding Expected Activity Completion Activity Completion Time Time (in (in weeks) weeks) 9 A None 5 Η В В А 2 Ι G. E 1 (С J А 6 G 2 12 Κ D В F, I, J 3 E L 9 D 10 Κ F D 9 H, G 7 Μ G D 5 M 8 Ν Draw a PERT network for this project. (i) Find the various paths and the critical path as well as the project completion time. (b) If in a particular single server system, the arrival rate $\lambda = 5$ per hour and service, $\mu=8$ per hour assume the conditions for use of the single channel queuing model. Find out: The probability that the server is idle. (i) (ii) The probability that there are at least two customers in the system. Expected time that a customer is in the queue. (iii)

26-Decr

Sub Code:RME075

Printed Pag	ge 3 of 3
D T.I.	1

Pape

6.