Printed Page 1 of 2 Sub Code: RME503

Paper Id: 140508 Roll No:

B.TECH. (SEM V) THEORY EXAMINATION 2019-20 MANUFACTURING SCIENCE & TECHNOLOGY-II

Time: 3 Hours Total Marks: 70

Note: Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 7 = 14$

a.	During metal cutting operation with coefficient of friction (μ)=0.3 and rake		
	angle(α =12 ⁰), calculate shear plane angle using Lee and Shaffer theory of metal		
	cutting.		
b.	Differentiate between up milling and down milling.		
c.	Differentiate between polishing and buffing operation.		
d.	Define the term tolerance sink.		
e.	Define deposition rate, reinforcement, weld bead and throat related to welding		
	process.		
f.	Define the term duty cycle.		
g.	Differentiate between chemical machining and electrochemical machining.		

SECTION B

2. Attempt any three of the following:

 $7 \times 3 = 21$

a.	Show that during orthogonal cutting with a zero degree of rake angle, the ra of the shear strength τ_s of the work material to specific cutting energy (U_c),		
	given by		
	$\tau_{\rm s}/U_{\rm c} = (1- \mu {\rm r}). {\rm r}/1 + {\rm r}^2$		
	Where r is chip thickness ratio and μ is coefficient of friction and U_c is specific		
	cutting energy		
b.	What do you mean by taper turning operation? Explain any two methods of		
taper turning with help of neat sketch.			
c.	A 900 mm long steel plate is welded by manual metal arc welding process		
	using welding current of 150A, Arc voltage of 20V and welding speed of		
	300m/min. if the process efficiency is 0.8 and surface resistance is 36 micro Ω ,		
	calculate the heat input.		
d.	A hole and a shaft have a basic size of 60 mm and are to have a clearance fit		
	with maximum clearance of 0.05mm and minimum clearance of 0.02 mm. the		
	hole tolerance is to be 1.5 times of the shaft clearance. Determine the limits for		
	both hole and shaft using (i) A hole basis system (ii) shaft basis system.		
e.	During an electric discharge drilling of 10 mm square hole in a low carbon steel		
	plate of 5 mm thickness brass tool and kerosene are used. The resistance and		
	capacitance in the relaxation circuit are 50Ω and 10μ , respectively. The supply		
	voltage is 200 V and the gap is maintained at such a value that the discharge		
	takes place at 150 V. Estimate the time required to complete the drilling		
	operation.		

Id:	140508 Roll No:			
	SECTION C			
Atte	npt any one part of the following:	7 x 1 = 7		
(a)	For a certain job cost of metal cutting is Rs. 18C/V 270C/TV. Where C' is constant, 'V' is cutting speel life in min. The Taylors tool life equation is V' optimum cutting speed (m/min) for minimum total c	ed in m/min. and 'T' is too $T^{0.25} = 150$. Calculate the		
(b)	In an orthogonal cutting operation the following dat chip thickness = 0.128 mm, width of cut = (V)=2m/sec. Rake angle = 10°, cutting force =5671 thickness=0.228 mm. Determine the shear angle, along shear plane and chip flow velocity using merch	ta has been observed, uncu 6035 mm, cutting speed N, thrust force =227N, chip friction angle, shear stres		
Atte	npt any <i>one</i> part of the following:	$7 \times 1 = 7$		
(a)	Differentiate between shaper and planner. Also expl shaper with help of neat sketch.	ain the drive mechanism o		
(b)	Show that maximum chip thickness in slab milling operation is given by			
	$t_{\text{max}} = 2f \sqrt{d(D-d)} / NZD$, here f =table feed rate of teeth in the cutter, D= cutter diameter and d= dept			
Atte	npt any <i>one</i> part of the following:	7 x 1 = 7		
(a)	Discuss the material removal mechanism of chip for Also explain cylindrical grinding with neat sketch.	rmation of grinding process		
(b)	Explain the wear mechanism of grinding wheel. A grinding wheel with suitable example.			
Atte	npt any <i>one</i> part of the following:	$7 \times 1 = 7$		
(a)	Explain principle of Arc welding and Tungsten inert gas welding with help of neat sketch.			
(b)	Explain the principle of Resistance welding process. Also explain Thermit welding process with help of neat sketch.			
Atte	npt any <i>one</i> part of the following:	7 x 1 = 7		
(a)	Explain the mechanism of electrochemical machining process. Also derive the			

Explain the working principle of laser beam machining with neat sketch. Also

write down the limitations and application of laser beam machining.

expression for material removal rate.

(b)