
MIT International Journal of Computer Science and Information Technology, Vol. 11, No. 1, December 2022 ISSN 2230-7621

26

Mask Detection System Using Convolutional

Neural Network

Zubair Iqbal
CS&E Deptt MIT, Moradabad

zubairiqbal17@gmail.com

Prachi Gupta
CS&E Deptt MIT, Moradabad

prachi.g19@gmail.com

Abstract— The Covid-19 Pandemic has caused a global

economic slowdown, leading to a decrease in consumer

spending and a decrease in demand for goods and services.

This has resulted in a decrease in production and a decrease

in employment. As a result, companies are facing financial

pressures and are unable to pay their employees. These

measures include social distancing, frequent hand washing,

wearing masks, and avoiding large gatherings. Governments

around the world are also providing economic stimulus

packages to help businesses and people cope with the

economic impact of the pandemic. Vaccines are also being

developed and distributed to help fight the virus.

Furthermore, more research is being conducted in order to

improve existing treatments and develop new treatments for

COVID-19. Finally, authorities are also taking steps to

ensure that the public is aware of the necessary

precautionary steps so that the spread of the virus can be

contained and the pandemic can be overcome. But then

things will never get back to normal until more than 80% of

the country's population is being vaccinated, which in itself

will take time. Till then Face Mask & Hand Sanitization are

the only vaccines we have. With the upliftment of lockdown

Offices, Factories, Public Places are going back to the new

normal with precautionary measures. But even today a large

section of people takes things lightly and do not take

precautionary measures like Face Mask seriously. This

paper is a small step to automatically detect face masks and

provide a precautionary measure because safety is the only

cure for this pandemic.

Keywords— Convolutional Neural Network, Face Detection

I. INTRODUCTION

Intelligent Mask Detection & Identification Alert System
is a Deep learning project built completely written in Python
using various dependencies. The project focuses on
providing a Real-Time Face Mask Detection System with
self-learning capability. Further, It is also tied with a Real-
Time Alert mechanism to guide people to wear a mask and
sanitize at the doorstep. With the spread of Covid-19 across
the globe, Things will not get normal until 80% of the
population will be vaccinated. Till then Face Mask and Hand
Sanitization are the only vaccines we can rely on.

II. TECHNOLOGY USED

A. Python

Python syntax is as simple as plain English. This allows a

developer to focus on design patterns rather than having a

complete concentration on the coding part. Python is open

source and python can be easily integrated with web

frameworks. It has support for various computer vision

libraries and machine learning libraries. It can be simply run

with the help of an interpreter and doesn’t require its own

environment. It can be used on any operating system.

B. OpenCV

OpenCV is an open-source library for computer vision and

machine learning, this focus on real-time applications. It

provides a wide range of tools and functions for image and

video processing, including feature detection, object

recognition, and machine learning algorithms. It is also

designed to be highly optimized for performance, making it

suitable for use in commercial products. The BSD license

allows for easy integration and modification of the code in

commercial projects.

C. Pillow

Pillow is an open-source Python library built on top of PIL

(Python Image Library), which provides a wide range of

image processing capabilities. It supports a variety of image

file formats, including jpeg, png, bmp, gif, ppm, and tiff.

Pillow also provides additional features and functionality

over PIL, such as support for Python 3, and a more user-

friendly API. With Pillow, you can perform various

operations on digital images, such as point operations,

filtering, and color space conversions, as well as more

advanced image processing tasks like image resizing,

cropping, and rotating. It is a powerful library that allows

developers to easily manipulate and process images in

various ways.

D. Pycharm

PyCharm is a popular IDE for Python development, created

by JetBrains. It provides a wide range of features and tools to

help developers write, test, and debug Python code. Some of

the key features of PyCharm include:

 Code completion and error highlighting: PyCharm

can help you write code faster by providing

suggestions for code completion and highlighting

errors as you type.

Satendra Kumar
CS&E Deptt MIT, Moradabad

satendra04cs41@gmail.com

MIT International Journal of Computer Science and Information Technology, Vol. 11, No. 1, December 2022 ISSN 2230-7621

27

 Intelligent code navigation: PyCharm can help you

navigate through your codebase quickly and easily,

with features like search, go-to-definition, and code

refactoring.

 Integrated debugging and testing: PyCharm

includes a built-in debugger and test runner, making

it easy to find and fix errors in your code.

 Support for popular web frameworks: PyCharm has

built-in support for popular web frameworks like

Django, Flask, and Pyramid, which can help you to

work more efficiently.

 Other features: PyCharm also provides features

such as version control integration, integration with

databases, and support for scientific libraries like

NumPy and Matplotlib.

PyCharm is available in two editions: Community and

Professional. The Community edition is free and open-

source, while the Professional edition is paid and

includes additional features like remote development

and web development frameworks

E. Haar Cascade

The Haar Cascade algorithm uses the concept of Haar

features, integral images, Adaboost training, and cascading

classifiers to detect objects in images and videos. The

algorithm is trained on a large dataset of positive and

negative images, and the trained cascade function is then

used to detect objects in other images. The algorithm is

widely used in computer vision applications such as face

detection, object tracking, and security systems. It is

considered to be an efficient and effective object detection

algorithm, but it is not as accurate as some other more recent

deep learning-based algorithms.

III. LITERATURE SURVEY

A. Image Generation

OpenCV is a popular library for computer vision tasks, and it

is often used in projects related to face detection and object

tracking. It can be used to process live video streams and

detect faces in real-time by using pre-trained cascaded

classifiers or deep learning-based models.

The OpenCV library can be used to detect faces by using the

Haar Cascade algorithm, which is a machine learning-based

approach for object detection. This algorithm can be trained

on a large dataset of positive and negative images, and the

trained cascade function can then be used to detect faces in

other images.

It is said that the application transmits a snapshot of the live

video to the model for mask detection every second. This is a

common approach when working with real-time video

streams. By taking periodic snapshots of the video, the

application can detect faces and other objects in the images

and perform additional processing, such as mask detection.

It is important to note that using OpenCV for face detection

and mask detection is a good choice for real-time

application, however for more accurate results, deep

learning-based models like YOLO, RetinaNet, or SSD can be

used with OpenCV.

B. Face Detection

Our primary point of emphasis in social situations is the

face, which is crucial for expressing identity and emotions.

Because they can advance both theoretical understanding

and real-world applications, computational models of face

identification are intriguing. A wide range of jobs, including

criminal identification, security systems, image and film

processing, identity verification, tagging for purposes, and

human-computer interaction, could be performed by

computers that can detect and recognize faces.

C. Viola-Jones algorithm for Face Detection

Paul Viola and Michael Jones' paper, "Rapid Object

Detection with a Boosted Cascade of Basic Features,"

describes an efficient object recognition technique that uses

Haar feature-based cascade classifiers. Using machine

learning, a cascade function is trained using a large number

of both positive and negative images. The next step is to

utilise it to find items in other pictures.

 PRE-PROCESSING: The pre-processing stage

prepares an image for the classifiers to run on. At this
stage, images are created from a live video feed,
converted to grayscale, and then down-sampled in
order to detect faces

 RUNNING THE SLIDING WINDOW: The sliding
window is a fixed window with a size of 24x24 that
moves pixel-by-pixel over the image while applying
various filters to the region it covers. These filters
show some characteristics that can then be used to
categorise the area as a face or not.

 HAAR FILTERS: The region of the image it confines
receives numerous filter calls from the sliding
window. These filters, known as Haar Filters, make
the image's horizontal and vertical details visible. At a
certain point in the detection window, a Haar-like
feature takes into account adjacent rectangular
sections, adds the pixel intensities in each sector, and
then determines the difference between these sums.
Subsections of an image are then categorised using
this difference.

 CASCADE CLASSIFIER: Each sub-window is
subjected to the application of a single big classifier
that contains a collection of Haar-like features. An
individual characteristic is used by the algorithm at

MIT International Journal of Computer Science and Information Technology, Vol. 11, No. 1, December 2022 ISSN 2230-7621

28

each step to categorise a sub-window. If the sub-
window satisfies the requirements, the algorithm
continues by applying further characteristics; if not,
the sub-window is dismissed. The programme
compares the results against tried-and-true classifiers
at each level, which makes intuitive sense. Early
stages are simpler, whereas later stages require a lot
of computation and are more challenging to pass.

 To train the classifier, the algorithm first requires a
large number of both positive (pictures of faces) and
negative (images without faces). After that, features
are taken out of it. The haar features depicted in the
graphic below are employed for this. They resemble
our convolutional kernel exactly. The sum of the
pixels under the white rectangle and the sum of the
pixels under the black rectangle are subtracted to
provide a single value for each feature. Yet, the
majority of these estimated attributes are irrelevant.
For instance, think about the photo below. There are
two excellent characteristics on the top row. The fact
that the area around the eyes is frequently darker than
the area around the nose and cheeks seems to be the
primary emphasis of the first trait chosen.

Using a concept called Adaboost, which both selects
the best features and trains the classifiers that use
them, it is possible to choose the best features out of
more than 160000 features. By linearly combining
weighted, straightforward "weak" classifiers, this
approach creates a "strong" classifier. During the
detection phase, a window the target size is moved
over the input image as each segment and the Haar

characteristics are calculated. Then, this difference is
contrasted with a learnt threshold that distinguishes
between objects and non-objects. Since each Haar
feature is simply a "weak classifier" (its detection
quality is barely better than random guessing), many
Haar features must be combined into cascade
classifiers in order to create a strong classifier that can
accurately characterise objects..

Classifier Cascade The cascade classifier is made up

of a number of steps, each of which is made up of

weak learners. Decision stumps are straightforward

classifiers that are lousy learners. With the aid of the

boosting method, each step is trained. By using a

weighted average of the choices made by the weak

learners, boosting makes it possible to train a

classifier that is incredibly precise. Each classifier

step assigns a positive or negative label to the area

that is specified by the sliding window's current

position. Positive denotes the discovery of an object,

whereas negative denotes the absence of any

discoveries. If the label is negative, the region has

been properly classified, and the detector moves the

window to the next spot. The classifier advances the

region to the following stage if the label is positive.

When the region is classified as positive at the final

stage, the detector reports an object found at the

current window location. The phases are created to

quickly reject negative samples. The vast majority of

windows are assumed to be empty of the target

object. On the other hand, real positives are

uncommon and worth checking.

 When a positive sample is appropriately

categorized, a true positive occurs.

 When a negative sample is incorrectly

identified as positive, a false positive result.

 When a positive sample is wrongly labelled as

negative, a false negative result.

D. Convolutional Neural Network

A Convolutional Neural Network (ConvNet/CNN) is a Deep

Learning method that can take in an input image, give

various elements and objects in the image importance

(learnable weights and biases), and be able to distinguish

between them. Comparatively speaking, a ConvNet requires

substantially less pre-processing than other classification

techniques. ConvNets can learn these filters/characteristics

with adequate training, whereas with primitive approaches

filters are hand-engineered.

MIT International Journal of Computer Science and Information Technology, Vol. 11, No. 1, December 2022 ISSN 2230-7621

29

A ConvNet's architecture was influenced by how the Visual

Cortex is organised and is similar to the connectivity

network of neurons in the human brain. Individual neurons

only respond to stimuli in the Receptive Field, which is a

little area of the visual field. There are several overlapping

fields like this that make up the total visual field.

Why ConvNets over Feed-Forward Neural Nets?

Simply put, a picture is a matrix of pixel data. Why not

simply flatten the image (e.g., turn a 3x3 image matrix into a

9x1 vector) for classification purposes? truly not.

For relatively straightforward binary images, the method

might perform class prediction with an average precision

score, but for complex images with internal pixel

dependencies, it would perform with little to no accuracy..

A ConvNet may successfully capture the spatial and

temporal dependencies in a picture by employing the

appropriate filters. The architecture offers a better fitting to

the picture dataset because there are less parameters to take

into account and the weights can be reused. In other words,

the network might be given instructions to help it

understand how complicated the image is.

Input Image

Red, Green, and Blue, the three colour planes of the RGB

image, have been used to divide it in the image. Several

different colour spaces, such as grayscale, RGB, HSV,

CMYK, etc., are all used to store images.

You can imagine how computationally intensive things

would get once the photographs reach sizes like 8K

(7680x4320). The goal of the ConvNet is to compress the

images into a more manageable format without losing

crucial components needed to produce an accurate forecast.

This is critical when developing an architecture that is both

efficient at learning features and scalable to huge datasets.

Convolution Layer — The Kernel

Dimensions of the image are 5 (height) x 5 (breadth) x 1

(Number of channels, eg. RGB)

The demonstration above mimics our 5x5x1 input image

with a green region. The element that executes the

convolution process in the first part of a convolutional layer

is the Kernel/Filter, K, which is symbolised by the colour

yellow. K is represented as a 3x3x1 matrix..

When the stride length is set to 1, the kernel shifts by one

pixel at a time, performing a matrix multiplication operation

between the kernel (K) and the portion of the image (P) over

which the kernel is currently positioned. This process is

repeated 9 times in total to cover the entire image.

When convolving the filter over the image, it typically starts

at the top-left corner of the image and moves to the right

MIT International Journal of Computer Science and Information Technology, Vol. 11, No. 1, December 2022 ISSN 2230-7621

30

with a certain stride value until it reaches the end of the

current row. Then, it "hops" down to the next row, again

starting at the left side, and continues the process until the

entire image is traversed. This process is done with the

stride value set, it could be 1 or more depending on the

requirement.

The kernel has the same depth as the input image when

dealing with images that have many channels, such as RGB

images. This allows for a matrix multiplication operation to

be conducted between each channel of the kernel and the

corresponding channel of the input image. The results of

these matrix multiplications are then added together with a

bias term to produce the convoluted feature output, a single

output channel. The convolution operation's goal is to

extract from the input image high-level features like edges,

patterns, and textures.

Convolutional Neural Networks (ConvNets) are not limited

to only one convolutional layer. Conventionally, the first

convolutional layer is responsible for capturing low-level

features such as edges, color, and gradient orientation. As

the network progresses, with added layers, the architecture

adapts to high-level features such as object shapes and

patterns. This provides the network with a comprehensive

comprehension of the photos in the collection, just like a

human would.

The convolution operation produces two different kinds of

results: one where the dimensionality of the convolved

feature is decreased in comparison to the input, and the

other where the dimensionality is either raised or stays the

same.

When the convolved feature is less dimensional than the

input, valid padding is employed. This is accomplished by

not padding the input picture further before applying the

kernel. This can be seen in the example you gave, where a

3x3x1 kernel and a 5x5x1 image are convolved to produce a

3x3x1 convolved matrix..

On the other hand, when the dimensionality of the

convolved feature is either raised or stays the same as the

input, the same padding is applied. This is accomplished by

increasing the input image's padding so that the output

feature, following convolution, is the same size as the input

feature. In the example you gave, a 5x5x1 image is

enhanced to a 6x6x1 image and then convolved with a

3x3x1 kernel to get a 5x5x1 convolved matrix, you can see

how this is done.

The stride length also plays a role in determining the size of

the convolved feature. A larger stride length results in a

smaller convolved feature, while a smaller stride length

results in a larger convolved feature.

It is important to note that the padding and stride length can

be adjusted according to the specific needs of the problem.

The repository you mentioned is a great resource for

visualizing the effect of different padding and stride length

values on the convolution operation.

Pooling Layer

Via dimensionality reduction, the pooling layer is utilised to

reduce the computing load needed to process the data by

shrinking the spatial size of the convolved feature. The

process of efficiently training the model can be maintained

by extracting dominant characteristics that are rotationally

and positionally invariant.

Max pooling and average pooling are the two types of

pooling. In contrast to average pooling, which returns the

average of all the values from the portion of the picture

covered by the kernel, max pooling returns the highest value

from the area of the image covered by the kernel.

Max pooling outperforms average pooling in terms of

effectiveness because it also reduces noise. It also does de-

noising and dimensionality reduction in addition to

completely discarding the noisy activations. Average

MIT International Journal of Computer Science and Information Technology, Vol. 11, No. 1, December 2022 ISSN 2230-7621

31

pooling, on the other hand, merely carries out

dimensionality reduction as a noise-suppressing strategy.

The i-th layer of a convolutional neural network is made up

of the convolutional layer and the pooling layer. The

number of these layers may be expanded to capture even

more minute details, but doing so will require more

computer power depending on how complex the images are.

After going through the approach outlined above, we were

able to successfully help the model comprehend the

features. Next, we will flatten the output for classification

purposes and feed it into a standard neural network. Final

predictions are often made by running the output through a

completely connected layer, also referred to as a dense

layer.

Classification — Fully Connected Layer (FC Layer)

The Fully Connected (FC) layer, also known as a dense

layer, is used to make predictions based on the high-level

features extracted by the convolutional and pooling layers.

The FC layer receives the flattened output of the previous

layers and applies non-linear transformations through the use

of activation functions, such as ReLU or sigmoid. The output

of the FC layer is then passed through a final layer, such as a

softmax layer, which performs the classification task using

the technique of probability estimation. The model is then

trained using backpropagation, and the parameters are

adjusted to minimize the error between the predicted and

actual outputs. Overall, the combination of convolutional,

pooling, and fully connected layers forms a powerful

architecture for image classification tasks, known as

Convolutional Neural Networks (CNNs).

IV. PROPOSED

The proposed method consists of a cascade classifier and a

CNN which contains for face mask detection is as follows

INPUT: Dataset including faces with and without masks.

OUTPUT: Categorized image depicting the presence of face

mask.

ALGORITHM:

 REAL-TIME COMPUTER VISION

The OpenCV library proved to be versatile enough for the

project, as it can detect and highlight faces in real time by

drawing a rectangle around them. The application takes a

snapshot of the live footage every second while faces are

being detected and sends it to the model for mask detection.

IMAGE GENERATION USING LIVE VIDEO STREAM

import cv2

img=cv2.VideoCapture(0) #Id of device passed as

parameter,0 for default

webcam

while True:

ret,frame=img.read()

if ret==False:

continue

gray_frame=cv2.cvtColor(frame,cv2.Color_BGR2GRAY)

cv2.imshow('frame',gray_frame)

key_pressed=cv2.waitKey(1)&0XFF

if(key_pressed==ord('q')):

break

img.release()

cv2.destroyAllWindows()

 FACE DETECTION

After going through the approach outlined above, we were

able to successfully help the model comprehend the features.

Next, we will flatten the output for classification purposes

and feed it into a standard neural network. Final predictions

are often made by running the output through a completely

connected layer, also referred to as a dense layer.

 MASK DETECTION

MIT International Journal of Computer Science and Information Technology, Vol. 11, No. 1, December 2022 ISSN 2230-7621

32

Convolutional Neural Networks, a Deep Learning technique,

are used to build the Face Mask detection system (CNN).

The Keras library's sequential API is used.

 NOTIFICATION

Once the user is identified without a mask for a particular

duration, Admin will be notified via email and then the user

can be directed to wear a mask & sanitize their hands.

V. CONCLUSION

In conclusion, this research paper presents a Mask Detection

System (MDS) based on Convolutional Neural Network

(CNN) architecture. The objective of the MDS is to

automatically identify whether individuals in images or

videos are wearing masks or not. The system aims to assist

in enforcing mask-wearing policies in public spaces, thereby

contributing to the prevention and control of infectious

diseases. The research utilized a CNN model due to its

effectiveness in image classification tasks. The architecture

consisted of multiple convolutional layers followed by

pooling and fully connected layers. The model was trained

on a large dataset containing images of individuals with and

without masks, ensuring a diverse range of scenarios and

variations in appearance. To train the CNN model, a

combination of data augmentation techniques, such as

rotation, scaling, and horizontal flipping, were applied to

increase the robustness and generalization of the model. The

dataset was split into training, validation, and testing sets,

ensuring a fair evaluation of the model's performance. The

experimental results demonstrated the effectiveness of the

proposed MDS. The model achieved a high accuracy in

mask detection, indicating its ability to differentiate between

masked and unmasked individuals accurately. The precision,

recall, and F1-score metrics were also evaluated, showing a

balanced performance across different evaluation criteria.

Moreover, the MDS showed promising results in real-world

scenarios, handling various challenges, such as different

types of masks, diverse facial appearances, and different

lighting conditions. This suggests the system's potential for

practical implementation in public spaces, where real-time

mask detection is essential for enforcing preventive

measures. The research also discussed the limitations and

future directions for improvement. Despite achieving high

accuracy, the model may still encounter challenges in cases

where individuals are wearing unconventional masks or

partially covering their faces. Future work could focus on

addressing these challenges and further enhancing the

system's performance. In summary, this research paper

presents a Mask Detection System based on a Convolutional

Neural Network, which demonstrates high accuracy and

robustness in identifying whether individuals are wearing

masks. The system has potential applications in public

health, safety, and compliance monitoring, contributing to

the prevention and control of infectious diseases in various

settings.

REFERENCES

[1] L. Haoxiang and Lin, "A Convolutional Neural Network Cascade for

Face Detection", Proc. CVPR, pp. 5325-5334, 2015.

[2] H. Hatem, Z. Beiji and R. Majeed, "A Survey of Feature Base
Methods for Human Face Detection", International Journal of
Control and Automation, vol. 8, no. 5, pp. 61-78, 2015.

[3] M. Loey, G. Manogaran, M. Hamed and N. Taha, "A hybrid deep
transfer learning model with machine learning methods for face mask
detection in the era of the COVID-19 pandemic", Journal of the
International Measurement Confederation (IMEKO), January 2021.

[4] R. P. Sidik and E. Contessa Djamal, "Face Mask Detection using
Convolutional Neural Network," 2021 4th International Conference
of Computer and Informatics Engineering (IC2IE), 2021, pp. 85-89,
doi: 10.1109/IC2IE53219.2021.9649065.

[5] G. Howard, M. Zhu, B. Chen et al., “Mobilenets:efficient
convolutional neural networks for mobilevisionapplications,” 2017,
https://arxiv.org/abs/1704.04861.

[6] M. S. Ejaz and M. R. Islam, "Masked Face Recognition Using
Convolutional Neural Network," 2019 International Conference on
Sustainable Technologies for Industry 4.0 (STI), 2019, pp. 1-6, doi:
10.1109/STI47673.2019.9068044

[7] Iqbal, Zubair; Gupta, Prachi; Gola, Kamal Kumar; ” Visualization of
COVID-19 Data using Jupyter Notebook”, Dogo Rangsang Research
Journal UGC Care Group I Journal, Vol-10 Issue-07 No. 1 July 2020,
ISSN : 2347-7180.

[8] K. Suresh, M. Palangappa and S. Bhuvan, "Face Mask Detection by
using Optimistic Convolutional Neural Network," 2021 6th
International Conference on Inventive Computation Technologies
(ICICT), 2021, pp. 1084-1089, doi:
10.1109/ICICT50816.2021.9358653.

[9] S. Yadav "Deep learning based safe social distancing and facemask
detection in public areas for COVID-19 safety guidelines adherence"
Int J Res Appl Sci Eng Technol. vol. 8 no. 7 pp. 1368-1375 2020.

[10] Tsega, Tajebe & Kumar, Deepak. (2021). Covid-19 Face Mask
Detection Using Convolutional Neural Network and Image
Processing. 1-7. 10.1109/INCET51464.2021.9456288.

https://arxiv.org/abs/1704.04861

