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Abstract— The Covid-19 Pandemic has caused a global 

economic slowdown, leading to a decrease in consumer 

spending and a decrease in demand for goods and services. 

This has resulted in a decrease in production and a decrease 

in employment. As a result, companies are facing financial 

pressures and are unable to pay their employees. These 

measures include social distancing, frequent hand washing, 

wearing masks, and avoiding large gatherings. Governments 

around the world are also providing economic stimulus 

packages to help businesses and people cope with the 

economic impact of the pandemic. Vaccines are also being 

developed and distributed to help fight the virus. 

Furthermore, more research is being conducted in order to 

improve existing treatments and develop new treatments for 

COVID-19. Finally, authorities are also taking steps to 

ensure that the public is aware of the necessary 

precautionary steps so that the spread of the virus can be 

contained and the pandemic can be overcome. But then 

things will never get back to normal until more than 80% of 

the country's population is being vaccinated, which in itself 

will take time. Till then Face Mask & Hand Sanitization are 

the only vaccines we have. With the upliftment of lockdown 

Offices, Factories, Public Places are going back to the new 

normal with precautionary measures. But even today a large 

section of people takes things lightly and do not take 

precautionary measures like Face Mask seriously. This 

paper is a small step to automatically detect face masks and 

provide a precautionary measure because safety is the only 

cure for this pandemic.  
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I. INTRODUCTION 

Intelligent Mask Detection & Identification Alert System 
is a Deep learning project built completely written in Python 
using various dependencies. The project focuses on 
providing a Real-Time Face Mask Detection System with 
self-learning capability. Further, It is also tied with a Real-
Time Alert mechanism to guide people to wear a mask and 
sanitize at the doorstep. With the spread of Covid-19 across 
the globe, Things will not get normal until 80% of the 
population will be vaccinated. Till then Face Mask and Hand 
Sanitization are the only vaccines we can rely on. 

II. TECHNOLOGY USED 

A. Python 

Python syntax is as simple as plain English. This allows a 

developer to focus on design patterns rather than having a 

complete concentration on the coding part. Python is open 

source and python can be easily integrated with web 

frameworks. It has support for various computer vision 

libraries and machine learning libraries. It can be simply run 

with the help of an interpreter and doesn’t require its own 

environment. It can be used on any operating system.  

B. OpenCV 

OpenCV is an open-source library for computer vision and 

machine learning, this focus on real-time applications. It 

provides a wide range of tools and functions for image and 

video processing, including feature detection, object 

recognition, and machine learning algorithms. It is also 

designed to be highly optimized for performance, making it 

suitable for use in commercial products. The BSD license 

allows for easy integration and modification of the code in 

commercial projects. 

C. Pillow 

Pillow is an open-source Python library built on top of PIL 

(Python Image Library), which provides a wide range of 

image processing capabilities. It supports a variety of image 

file formats, including jpeg, png, bmp, gif, ppm, and tiff. 

Pillow also provides additional features and functionality 

over PIL, such as support for Python 3, and a more user-

friendly API. With Pillow, you can perform various 

operations on digital images, such as point operations, 

filtering, and color space conversions, as well as more 

advanced image processing tasks like image resizing, 

cropping, and rotating. It is a powerful library that allows 

developers to easily manipulate and process images in 

various ways. 

 

D. Pycharm 

PyCharm is a popular IDE for Python development, created 

by JetBrains. It provides a wide range of features and tools to 

help developers write, test, and debug Python code. Some of 

the key features of PyCharm include: 

 Code completion and error highlighting: PyCharm 

can help you write code faster by providing 

suggestions for code completion and highlighting 

errors as you type. 
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 Intelligent code navigation: PyCharm can help you 

navigate through your codebase quickly and easily, 

with features like search, go-to-definition, and code 

refactoring. 

 Integrated debugging and testing: PyCharm 

includes a built-in debugger and test runner, making 

it easy to find and fix errors in your code. 

 Support for popular web frameworks: PyCharm has 

built-in support for popular web frameworks like 

Django, Flask, and Pyramid, which can help you to 

work more efficiently. 

 Other features: PyCharm also provides features 

such as version control integration, integration with 

databases, and support for scientific libraries like 

NumPy and Matplotlib. 

PyCharm is available in two editions: Community and 

Professional. The Community edition is free and open-

source, while the Professional edition is paid and 

includes additional features like remote development 

and web development frameworks 

 
 

E. Haar Cascade 

The Haar Cascade algorithm uses the concept of Haar 

features, integral images, Adaboost training, and cascading 

classifiers to detect objects in images and videos. The 

algorithm is trained on a large dataset of positive and 

negative images, and the trained cascade function is then 

used to detect objects in other images. The algorithm is 

widely used in computer vision applications such as face 

detection, object tracking, and security systems. It is 

considered to be an efficient and effective object detection 

algorithm, but it is not as accurate as some other more recent 

deep learning-based algorithms. 

III. LITERATURE SURVEY 

A. Image Generation 

OpenCV is a popular library for computer vision tasks, and it 

is often used in projects related to face detection and object 

tracking. It can be used to process live video streams and 

detect faces in real-time by using pre-trained cascaded 

classifiers or deep learning-based models. 

 

The OpenCV library can be used to detect faces by using the 

Haar Cascade algorithm, which is a machine learning-based 

approach for object detection. This algorithm can be trained 

on a large dataset of positive and negative images, and the 

trained cascade function can then be used to detect faces in 

other images. 

 

It is said that the application transmits a snapshot of the live 

video to the model for mask detection every second. This is a 

common approach when working with real-time video 

streams. By taking periodic snapshots of the video, the 

application can detect faces and other objects in the images 

and perform additional processing, such as mask detection. 

 

It is important to note that using OpenCV for face detection 

and mask detection is a good choice for real-time 

application, however for more accurate results, deep 

learning-based models like YOLO, RetinaNet, or SSD can be 

used with OpenCV. 

 

B. Face Detection 

Our primary point of emphasis in social situations is the 

face, which is crucial for expressing identity and emotions. 

Because they can advance both theoretical understanding 

and real-world applications, computational models of face 

identification are intriguing. A wide range of jobs, including 

criminal identification, security systems, image and film 

processing, identity verification, tagging for purposes, and 

human-computer interaction, could be performed by 

computers that can detect and recognize faces. 

 

C. Viola-Jones algorithm for Face Detection 

Paul Viola and Michael Jones' paper, "Rapid Object 

Detection with a Boosted Cascade of Basic Features," 

describes an efficient object recognition technique that uses 

Haar feature-based cascade classifiers. Using machine 

learning, a cascade function is trained using a large number 

of both positive and negative images. The next step is to 

utilise it to find items in other pictures. 

 
 PRE-PROCESSING: The pre-processing stage 

prepares an image for the classifiers to run on. At this 
stage, images are created from a live video feed, 
converted to grayscale, and then down-sampled in 
order to detect faces 

 RUNNING THE SLIDING WINDOW: The sliding 
window is a fixed window with a size of 24x24 that 
moves pixel-by-pixel over the image while applying 
various filters to the region it covers. These filters 
show some characteristics that can then be used to 
categorise the area as a face or not. 

 HAAR FILTERS: The region of the image it confines 
receives numerous filter calls from the sliding 
window. These filters, known as Haar Filters, make 
the image's horizontal and vertical details visible. At a 
certain point in the detection window, a Haar-like 
feature takes into account adjacent rectangular 
sections, adds the pixel intensities in each sector, and 
then determines the difference between these sums. 
Subsections of an image are then categorised using 
this difference. 

 CASCADE CLASSIFIER: Each sub-window is 
subjected to the application of a single big classifier 
that contains a collection of Haar-like features. An 
individual characteristic is used by the algorithm at 
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each step to categorise a sub-window. If the sub-
window satisfies the requirements, the algorithm 
continues by applying further characteristics; if not, 
the sub-window is dismissed. The programme 
compares the results against tried-and-true classifiers 
at each level, which makes intuitive sense. Early 
stages are simpler, whereas later stages require a lot 
of computation and are more challenging to pass. 

 

 

 To train the classifier, the algorithm first requires a 
large number of both positive (pictures of faces) and 
negative (images without faces). After that, features 
are taken out of it. The haar features depicted in the 
graphic below are employed for this. They resemble 
our convolutional kernel exactly. The sum of the 
pixels under the white rectangle and the sum of the 
pixels under the black rectangle are subtracted to 
provide a single value for each feature. Yet, the 
majority of these estimated attributes are irrelevant. 
For instance, think about the photo below. There are 
two excellent characteristics on the top row. The fact 
that the area around the eyes is frequently darker than 
the area around the nose and cheeks seems to be the 
primary emphasis of the first trait chosen.  

 

 

Using a concept called Adaboost, which both selects 
the best features and trains the classifiers that use 
them, it is possible to choose the best features out of 
more than 160000 features. By linearly combining 
weighted, straightforward "weak" classifiers, this 
approach creates a "strong" classifier. During the 
detection phase, a window the target size is moved 
over the input image as each segment and the Haar 

characteristics are calculated. Then, this difference is 
contrasted with a learnt threshold that distinguishes 
between objects and non-objects. Since each Haar 
feature is simply a "weak classifier" (its detection 
quality is barely better than random guessing), many 
Haar features must be combined into cascade 
classifiers in order to create a strong classifier that can 
accurately characterise objects.. 

Classifier Cascade The cascade classifier is made up 

of a number of steps, each of which is made up of 

weak learners. Decision stumps are straightforward 

classifiers that are lousy learners. With the aid of the 

boosting method, each step is trained. By using a 

weighted average of the choices made by the weak 

learners, boosting makes it possible to train a 

classifier that is incredibly precise. Each classifier 

step assigns a positive or negative label to the area 

that is specified by the sliding window's current 

position. Positive denotes the discovery of an object, 

whereas negative denotes the absence of any 

discoveries. If the label is negative, the region has 

been properly classified, and the detector moves the 

window to the next spot. The classifier advances the 

region to the following stage if the label is positive. 

When the region is classified as positive at the final 

stage, the detector reports an object found at the 

current window location. The phases are created to 

quickly reject negative samples. The vast majority of 

windows are assumed to be empty of the target 

object. On the other hand, real positives are 

uncommon and worth checking. 

 When a positive sample is appropriately 

categorized, a true positive occurs. 

 When a negative sample is incorrectly 

identified as positive, a false positive result. 

 When a positive sample is wrongly labelled as 

negative, a false negative result. 

 

D. Convolutional Neural Network 

 
A Convolutional Neural Network (ConvNet/CNN) is a Deep 

Learning method that can take in an input image, give 

various elements and objects in the image importance 

(learnable weights and biases), and be able to distinguish 

between them. Comparatively speaking, a ConvNet requires 

substantially less pre-processing than other classification 

techniques. ConvNets can learn these filters/characteristics 

with adequate training, whereas with primitive approaches 

filters are hand-engineered. 
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A ConvNet's architecture was influenced by how the Visual 

Cortex is organised and is similar to the connectivity 

network of neurons in the human brain. Individual neurons 

only respond to stimuli in the Receptive Field, which is a 

little area of the visual field. There are several overlapping 

fields like this that make up the total visual field. 

 

Why ConvNets over Feed-Forward Neural Nets?  

 

 
Simply put, a picture is a matrix of pixel data. Why not 

simply flatten the image (e.g., turn a 3x3 image matrix into a 

9x1 vector) for classification purposes? truly not. 

 

For relatively straightforward binary images, the method 

might perform class prediction with an average precision 

score, but for complex images with internal pixel 

dependencies, it would perform with little to no accuracy.. 

 

A ConvNet may successfully capture the spatial and 

temporal dependencies in a picture by employing the 

appropriate filters. The architecture offers a better fitting to 

the picture dataset because there are less parameters to take 

into account and the weights can be reused. In other words, 

the network might be given instructions to help it 

understand how complicated the image is. 

 

Input Image 

 
Red, Green, and Blue, the three colour planes of the RGB 

image, have been used to divide it in the image. Several 

different colour spaces, such as grayscale, RGB, HSV, 

CMYK, etc., are all used to store images. 

You can imagine how computationally intensive things 

would get once the photographs reach sizes like 8K 

(7680x4320). The goal of the ConvNet is to compress the 

images into a more manageable format without losing 

crucial components needed to produce an accurate forecast. 

This is critical when developing an architecture that is both 

efficient at learning features and scalable to huge datasets. 

 

 

Convolution Layer — The Kernel 

 
Dimensions of the image are 5 (height) x 5 (breadth) x 1 

(Number of channels, eg. RGB) 

The demonstration above mimics our 5x5x1 input image 

with a green region. The element that executes the 

convolution process in the first part of a convolutional layer 

is the Kernel/Filter, K, which is symbolised by the colour 

yellow. K is represented as a 3x3x1 matrix.. 

 

When the stride length is set to 1, the kernel shifts by one 

pixel at a time, performing a matrix multiplication operation 

between the kernel (K) and the portion of the image (P) over 

which the kernel is currently positioned. This process is 

repeated 9 times in total to cover the entire image. 

 
When convolving the filter over the image, it typically starts 

at the top-left corner of the image and moves to the right 
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with a certain stride value until it reaches the end of the 

current row. Then, it "hops" down to the next row, again 

starting at the left side, and continues the process until the 

entire image is traversed. This process is done with the 

stride value set, it could be 1 or more depending on the 

requirement. 

 

 
 

The kernel has the same depth as the input image when 

dealing with images that have many channels, such as RGB 

images. This allows for a matrix multiplication operation to 

be conducted between each channel of the kernel and the 

corresponding channel of the input image. The results of 

these matrix multiplications are then added together with a 

bias term to produce the convoluted feature output, a single 

output channel. The convolution operation's goal is to 

extract from the input image high-level features like edges, 

patterns, and textures. 

 

Convolutional Neural Networks (ConvNets) are not limited 

to only one convolutional layer. Conventionally, the first 

convolutional layer is responsible for capturing low-level 

features such as edges, color, and gradient orientation. As 

the network progresses, with added layers, the architecture 

adapts to high-level features such as object shapes and 

patterns. This provides the network with a comprehensive 

comprehension of the photos in the collection, just like a 

human would. 

 
The convolution operation produces two different kinds of 

results: one where the dimensionality of the convolved 

feature is decreased in comparison to the input, and the 

other where the dimensionality is either raised or stays the 

same. 

When the convolved feature is less dimensional than the 

input, valid padding is employed. This is accomplished by 

not padding the input picture further before applying the 

kernel. This can be seen in the example you gave, where a 

3x3x1 kernel and a 5x5x1 image are convolved to produce a 

3x3x1 convolved matrix.. 

 

On the other hand, when the dimensionality of the 

convolved feature is either raised or stays the same as the 

input, the same padding is applied. This is accomplished by 

increasing the input image's padding so that the output 

feature, following convolution, is the same size as the input 

feature. In the example you gave, a 5x5x1 image is 

enhanced to a 6x6x1 image and then convolved with a 

3x3x1 kernel to get a 5x5x1 convolved matrix, you can see 

how this is done. 

 

The stride length also plays a role in determining the size of 

the convolved feature. A larger stride length results in a 

smaller convolved feature, while a smaller stride length 

results in a larger convolved feature. 

 

It is important to note that the padding and stride length can 

be adjusted according to the specific needs of the problem. 

The repository you mentioned is a great resource for 

visualizing the effect of different padding and stride length 

values on the convolution operation. 

 

Pooling Layer 

 
Via dimensionality reduction, the pooling layer is utilised to 

reduce the computing load needed to process the data by 

shrinking the spatial size of the convolved feature. The 

process of efficiently training the model can be maintained 

by extracting dominant characteristics that are rotationally 

and positionally invariant. 

 

Max pooling and average pooling are the two types of 

pooling. In contrast to average pooling, which returns the 

average of all the values from the portion of the picture 

covered by the kernel, max pooling returns the highest value 

from the area of the image covered by the kernel. 

 

Max pooling outperforms average pooling in terms of 

effectiveness because it also reduces noise. It also does de-

noising and dimensionality reduction in addition to 

completely discarding the noisy activations. Average 
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pooling, on the other hand, merely carries out 

dimensionality reduction as a noise-suppressing strategy. 

 
The i-th layer of a convolutional neural network is made up 

of the convolutional layer and the pooling layer. The 

number of these layers may be expanded to capture even 

more minute details, but doing so will require more 

computer power depending on how complex the images are. 

 

After going through the approach outlined above, we were 

able to successfully help the model comprehend the 

features. Next, we will flatten the output for classification 

purposes and feed it into a standard neural network. Final 

predictions are often made by running the output through a 

completely connected layer, also referred to as a dense 

layer. 

 

 
Classification — Fully Connected Layer (FC Layer) 

 

 
The Fully Connected (FC) layer, also known as a dense 

layer, is used to make predictions based on the high-level 

features extracted by the convolutional and pooling layers. 

The FC layer receives the flattened output of the previous 

layers and applies non-linear transformations through the use 

of activation functions, such as ReLU or sigmoid. The output 

of the FC layer is then passed through a final layer, such as a 

softmax layer, which performs the classification task using 

the technique of probability estimation. The model is then 

trained using backpropagation, and the parameters are 

adjusted to minimize the error between the predicted and 

actual outputs. Overall, the combination of convolutional, 

pooling, and fully connected layers forms a powerful 

architecture for image classification tasks, known as 

Convolutional Neural Networks (CNNs). 

IV. PROPOSED  

The proposed method consists of a cascade classifier and a 

CNN which contains for face mask detection is as follows 

 

 

 

INPUT: Dataset including faces with and without masks. 

OUTPUT: Categorized image depicting the presence of face 

mask. 

ALGORITHM: 

 REAL-TIME COMPUTER VISION 

The OpenCV library proved to be versatile enough for the 

project, as it can detect and highlight faces in real time by 

drawing a rectangle around them. The application takes a 

snapshot of the live footage every second while faces are 

being detected and sends it to the model for mask detection. 

 

IMAGE GENERATION USING LIVE VIDEO STREAM 

import cv2 

img=cv2.VideoCapture(0) #Id of device passed as 

parameter,0 for default 

webcam 

while True: 

ret,frame=img.read() 

if ret==False: 

continue 

gray_frame=cv2.cvtColor(frame,cv2.Color_BGR2GRAY) 

cv2.imshow('frame',gray_frame) 

key_pressed=cv2.waitKey(1)&0XFF 

if(key_pressed==ord('q')): 

break 

img.release() 

cv2.destroyAllWindows() 

 

 FACE DETECTION 

After going through the approach outlined above, we were 

able to successfully help the model comprehend the features. 

Next, we will flatten the output for classification purposes 

and feed it into a standard neural network. Final predictions 

are often made by running the output through a completely 

connected layer, also referred to as a dense layer. 

 

 MASK DETECTION 
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Convolutional Neural Networks, a Deep Learning technique, 

are used to build the Face Mask detection system (CNN). 

The Keras library's sequential API is used. 

 

 NOTIFICATION 

Once the user is identified without a mask for a particular 

duration, Admin will be notified via email and then the user 

can be directed to wear a mask & sanitize their hands. 

 

 

 

V.  CONCLUSION 

In conclusion, this research paper presents a Mask Detection 

System (MDS) based on Convolutional Neural Network 

(CNN) architecture. The objective of the MDS is to 

automatically identify whether individuals in images or 

videos are wearing masks or not. The system aims to assist 

in enforcing mask-wearing policies in public spaces, thereby 

contributing to the prevention and control of infectious 

diseases. The research utilized a CNN model due to its 

effectiveness in image classification tasks. The architecture 

consisted of multiple convolutional layers followed by 

pooling and fully connected layers. The model was trained 

on a large dataset containing images of individuals with and 

without masks, ensuring a diverse range of scenarios and 

variations in appearance. To train the CNN model, a 

combination of data augmentation techniques, such as 

rotation, scaling, and horizontal flipping, were applied to 

increase the robustness and generalization of the model. The 

dataset was split into training, validation, and testing sets, 

ensuring a fair evaluation of the model's performance. The 

experimental results demonstrated the effectiveness of the 

proposed MDS. The model achieved a high accuracy in 

mask detection, indicating its ability to differentiate between 

masked and unmasked individuals accurately. The precision, 

recall, and F1-score metrics were also evaluated, showing a 

balanced performance across different evaluation criteria. 

Moreover, the MDS showed promising results in real-world 

scenarios, handling various challenges, such as different 

types of masks, diverse facial appearances, and different 

lighting conditions. This suggests the system's potential for 

practical implementation in public spaces, where real-time 

mask detection is essential for enforcing preventive 

measures. The research also discussed the limitations and 

future directions for improvement. Despite achieving high 

accuracy, the model may still encounter challenges in cases 

where individuals are wearing unconventional masks or 

partially covering their faces. Future work could focus on 

addressing these challenges and further enhancing the 

system's performance. In summary, this research paper 

presents a Mask Detection System based on a Convolutional 

Neural Network, which demonstrates high accuracy and 

robustness in identifying whether individuals are wearing 

masks. The system has potential applications in public 

health, safety, and compliance monitoring, contributing to 

the prevention and control of infectious diseases in various 

settings. 
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