\square

BTECH
(SEM I) THEORY EXAMINATION 2021-22
ENGINEERING MATHEMATICS-I
Time: 3 Hours
Total Marks: 100

Notes:

- Attempt all Sections and Assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly.

SECT	ION-A Attempt All of the following Questions in brief Marks(10X2=20)	CO
Q1(a)	If the matrix $A=\left[\begin{array}{ccc}-1 & 2 & 3 \\ 0 & 3 & 5 \\ 0 & 0 & -2\end{array}\right]$, then find the eigen value of $A^{3}+5 A+8 I$	1
Q1(b)	Reduce the matrix $\left[\begin{array}{lll}1 & 1 & 1 \\ 3 & 1 & 1\end{array}\right]$ into normal form and find its rank.	1
Q1(c)	Find the envelope of the family of straight line $y=m x+\frac{a}{m}$, where m is a parameter.	2
Q1(d)	Can mean value theorem be applied to $f(x)=\tan x$ in $[0, \pi]$.	2
Q1(e)	State Euler's Theorem on homogeneous function.	3
Q1(f)	Find the critical points of the function $f(x, y)=x^{3}+y^{3}-3 a x y$.	3
Q1(g)	Find the area bounded by curve $y^{2}=x$ and $x^{2}=y$.	
Q1(h)	Find the value of $\int_{0}^{1} \int_{0}^{x} \int_{0}^{x+y} d x d y d z$.	
Q1(i)	Find a unit normal vector to the surface $z^{2}=x^{2}+y^{2}$ a	5
Q1(j)	State Stoke's Theorem.	5
SECT	ION-B Attempt ANY THREE of the following Questions Marks $\mathbf{3 X 1 0}=\mathbf{3 0}$)	CO
Q2(a)	Find the characteristic equation of the matrix $A=\left[\begin{array}{lll}2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2\end{array}\right]$, compute A^{-1} and prove that $A^{8}-5 A^{7}+7 A^{6}-3 A^{5}+A^{4}-5 A^{3}+8 A^{2}-2 A+I=\left[\begin{array}{lll}8 & 5 & 5 \\ 0 & 3 & 0 \\ 5 & 5 & 8\end{array}\right]$.	1
Q2(b)	State Rolle's theorem and verify Rolle's theorem for the function $f(x)=\frac{\sin x}{e^{x}}$ in $[0, \pi]$.	2
Q2(c)	If u, v and w are the roots of $(\lambda-x)^{3}+(\lambda-y)^{3}+(\lambda-z)^{3}=0$, cubic in λ, find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$.	3
Q2(d)	Find the volume bounded by the cylinder $x^{2}+y^{2}=4$ and the plane $y+z=4$ and $z=0$.	4
Q2(e)	Apply Green's theorem to evaluate $\int_{C}\left[\left(2 x^{2}-y^{2}\right) d x+\left(x^{2}+y^{2}\right) d y\right]$,where C is th boundary of the area enclosed by the x -axis and the upper half of the circle $x^{2}+y^{2}=a^{2} .$	5

\square

| SECTION-C \quad Attempt ANY ONE following Question \quad Marks $(\mathbf{1 X 1 0}=\mathbf{1 0})$ | CO |
| :--- | :--- | :---: |
| Q4(a) | If $f(x)=\frac{x}{1+e^{\frac{1}{x}}} ; \quad x \neq 0$ and $f(0)=0$, then show that the function is continuous |
| but not differentiable at $x=0$. | 2 |
| Q4(b) | If $y=\left(x+{\left.\sqrt{1+x^{2}}\right)^{m}, \text { find } y_{n}(0) .}^{2}\right.$ |

SECTION-C Attempt ANY ONE following Question Marks $(\mathbf{1 X 1 0 = 1 0})$	CO	
Q5(a)	Expand x^{y} in powers of $(x-1)$ and $(y-1)$ up to the third-degree terms and hence evaluate $(1.1)^{1.02}$.	3
Q5(b)	A rectangular box which is open at the top having capacity 32c.c. Find the dimension of the box such that the least material is required for its constructions.	3

| SECTION-C Attempt ANY ONE following Question \quad Marks (1X10=10) | CO |
| :--- | :--- | :---: |
| Q6(a) | Change the order of integration in $I=\int_{0}^{1} \int_{x^{2}}^{2-x} x y d y d x$ and hence evaluate the |
| | same. |

| SECTION-C Attempt ANY ONE following Question \quad Marks (1X10=10) | CO | |
| :--- | :--- | :--- | :---: |
| Q7(a) | Find the directional derivative of $\nabla(\nabla f)$ at the point $(1,-2,1)$ in the direction of
 the normal to the surface $x y^{2} z=3 x+z^{2} \quad$ where $f=2 x^{3} y^{2} z^{4}$. | 5 |
| Q7(b) | Find the constants a, b, c so that
 $\vec{F}=(x+2 y+a z) \hat{\imath}+(b x-3 y-z) \hat{\jmath}+(4 x+c y+2 z) \hat{k}$ is irrotational and hence
 find function \emptyset such that $\vec{F}=\nabla \emptyset$. | 5 |

