Time: 3 Hours
Total Marks: 100
Note: 1. Attempt all Sections. If require any missing data; then choose suitably.
SECTION A

1. Attempt all questions in brief.
$2 \times 10=20$

Q no.	Question	Marks	CO
a.	Distinguish between gauge pressure and absolute pressure.	2	1
b.	What do you mean by Newtonian and non-Newtonian fluids?	2	1
c.	What is meta centric height? How is it determined?	2	1
d.	Define velocity potential function.	2	2
e.	Explain difference between Siphon and a Normal Tube.	2	2
f.	Differentiate between free and forced vortex	2	3
g.	Describe major and minor losses in pipes.	2	3
h.	Define the displacement thickness.	2	4
i.	What do you mean by 'Dimensional Analysis'?	2	5
j.	Explain bluff and streamlined body.	2	5

SECTION B

2. Attempt any three of the following:
$3 \times 10=30$

Q no.	Question	Marks	CO
a.	An oil tanker of $2.5 \times 2.5 \mathrm{~m}$ square cross section is 4 m ling. Oil is filled upto a depth of 2 m . At what acceleration is the direction of its length the tanker be moved so that the corner A is exposed? What is then the net horizontal force acting on the tanker sides? Take sp.gr. of oil as 0.8 .	$\mid 10$	1.
b.	Calculate the stream function for the given data: (i) Velocity components; $u=x=4 y$ and $v=-y-4 x$ (ii) velocity potential function $\varnothing=4 x(3 y-4)$.	10	2
c.	Calculate the discharge of water flowing through a pipe of 30 cm diameter placed in an inclined position where a venturi meter is inserted, haying a throat diameter of 15 cm . The difference of pressure between the main and the throat is measured by a liquid of specific gravity 0.6 in an inverted U-tübe which gives a reading of 30 cm . The loss of head between the main and the throat is 0.2 times the kinetic head of the pipe.	10	3
d.	Derive the momentum thickness for velocity distribution on the boundary layer given below- $\frac{u}{v}=\frac{3}{2} \eta-\eta^{2}$ Where $\dot{\eta}=\mathrm{y} / \delta$	10	4
e.	The variables controlling the motion of floating vessel through water are the drag force F , the speed V , the length L , the density d , dynamic viscosity μ of water and acceleration due to gravity g . Determine the expression for F by dimensional analysis.	10	5

SECTION C

3. Attempt any one part of the following:
$1 \times 10=10$

Q no.	Question	Marks	CO
a.	A tank contains water up to the height of 5 m above the base. An immiscible liquid of specific gravity 0.9 is filled on the top of the water up to 1 m height. Calculate total pressure on one side of the tank and the position of center of pressure	10	1

b.	Derive an expression for the depth of centre of pressure from free surface of a liquid of an inclined plane surface submerged into the liquid	10	1

4. Attempt any one part of the following:
$1 \times 10=10$

Q no.	Question	Marks	CO
a.	Illustrate velocity potential and stream function. Show that 3 D continuity equation for 3D flow in Cartesian coordinates is given by $\frac{\partial \rho}{\partial t}+\frac{\partial(\rho u)}{\partial x}+\frac{\partial(\rho v)}{\partial y}+\frac{\partial(\rho w)}{\partial z}=0$	10	2
b.	The velocity potential function is given by an expression $\emptyset=-\frac{x y^{3}}{3}-x^{2}+\frac{y x^{3}}{3}+y^{2}$ (i) Find the velocity component in x and y direction. (ii) Show that \varnothing represent a possible case of flow. iii) Find Stream function.	10	2

5. Attempt any one part of the following:
$1 \times 10=10$

Q no.	Question	Marks	CO
a.	Derive Euler's equation of motion. Also derive the Bernoalli's equation from Euler's equation and mention the necessary assumptions for this equation.	10	3
b.	Describe: (i) Stream-lined body and bluff body (ii) Darcy-weisbach formula and chezy's formula (iii) Equivalent pipe and compound pipe (iv) Hydraulic gradient line and totat energy line (v) Reynold's number and Euler's number.	10	3

6. Attempt any one part of the following:
$1 \times 10=10$

Q no.	Question	Marks	CO
a.	Illustrate Prandtl mixing length concept to describe the turbulence during the fluid flows at high Reynold's number.	10	4
b.	A pipe carrying water has average height of roughness of 0.48 mm . The diameter of pipe is 0.6 mm , lenth is 4.5 m . The discharge of water is is $0.6 \mathrm{~m} 3 /$ sec. Determine the power required to maintain the flow if $\mu=10^{-3} \mathrm{~N}-\mathrm{sec} / \mathrm{m}^{2}$. Use the relation $\quad \frac{1}{\sqrt{\mathrm{f}}}=2 \log _{10}\left(\frac{\mathrm{R}}{\mathrm{k}}\right)+1.74$	10	4

7. Attempt any one part of the following: $1 \times 10=10$

Q no.	Question	Marks	CO
a.	Illustrate terminal velocity of the body. Also illustrate the drag on a sphere and on a cylinder.	10	5
b.	Discuss geometric, kinematic and dynamic similarity. Are these equations obtainable?	10	5

