\square
BTECH
(SEM I) THEORY EXAMINATION 2021-22 EMERGING DOMAIN IN ELECTRONICS ENGINEERING

Time: 3 Hours
Total Marks: 100
Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.
$2 \times 10=20$
a. Determine β, if $\mathrm{I}_{\mathrm{E}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=4.95 \mathrm{~mA}$.
b. Define transconductance of JFET.
c. What do you mean by CMRR?
d. Differentiate the BJT and JFET.
e. $\quad(1010110100.110)_{2}=()_{16}$?
f. Differentiate between Avalanche and Zener breakdown.
g. Simplify the Boolean function using Boolean Algebra theorems: $A B^{\prime} C^{\prime}+A B C^{\prime}+A B^{\prime} C^{\prime}+A B C^{\prime}$
h. Differentiate between Microprocessor and Microcontroller.
i. What is Doping? What is the need of Doping?
j. What is RADAR? Write down two applications of RADAR.

SECTION B

2. Attempt any three of the following:
a. What do mean by clipper? Draw the output waveform of the given circuit.

b. Draw the Structure of Depletion type N-MOSFET. Explain its operation with characteristic graph.
c. i) Subtract using 10's complement: (9754) ${ }_{10}$ - (364) 10
ii) Subtract using 1 scomplement: $(10111)_{2}-(110011)_{2}$
d. Describe AM modulation and Demodulation technique with adequate diagram.
e. Write down the characteristics of ideal OP-AMP. Derive the expression for gain of OP-AMP as non-inverting amplifier.

SECTION C

3. Attempt any one part of the following:
$10 \times 1=10$
(a) Define Voltage Multiplier. Draw the circuit and explain the working of voltage Tripler and Quadrupler circuit.
(b) Draw the V-I charateristics of zener diode. Determine the network of figure given below, determine the range of Vin that will maintain V_{L} at 8 V and not
\square
exceeded the maximum power rating of the Zener diode.

4. Attempt any one part of the following:
(a) Describe the construction and working of a NPN transistor in CE configuration with respect to size and doping. Also, draw the input and output characteristic graph.
(b) Define α and β with respect to BJT and derive the relationship between them. A transistor having $\alpha=0.975$ and reverse saturation current $\mathrm{I}_{\text {сво }}=10 \mu \mathrm{~A}$ is operated in CE mode. If the base current is $250 \mu \mathrm{~A}$. Calculate IE and Ic.
5. Attempt any one part of the following:
(a) (i) Draw and explain the working of Integrator and Differentiator using OPAMP.
(ii) Write Short note on basic elements of communication system.
(b) (i) Determine the output voltage of an OPAMP for the input voltage of $\mathrm{V}_{1}=150 \mu \mathrm{~V}$ and $\mathrm{V}_{2}=140 \mu \mathrm{~V}$. The amplifier has differential gain $\mathrm{A}_{\mathrm{d}}=4000$ and CMRR is 100 .
(ii) Determine the output of the following circuit.

Given $\mathrm{V}_{1}=\mathrm{V}_{2}=0.15 \mathrm{~V}$

6. Attempt any one part of the following:
(a) i) Describe briefly Satellite Communication.
ii) Explain Positive and Negative Clamper using suitable circuit diagram and input/output waveform.
(b) An audio frequency signal $5 \operatorname{Sin}(2 \pi \times 500 t)$ is used to amplitude modulate a carrier of $25 \operatorname{Sin}\left(2 \pi \times 10^{5} \mathrm{t}\right)$. Calculate:
(i) Modulation index
(ii) Amplitude of Each side band
\square

BTECH

(SEM I) THEORY EXAMINATION 2021-22 EMERGING DOMAIN IN ELECTRONICS ENGINEERING
(iii) Total power
(iv) Bandwidth
(v) Transmission efficiency
7. Attempt any one part of the following:
$10 \times 1=10$
(a) Minimize using K-map and realize using NOR gates only. F (A, B, C, D) $=\Pi$ M $(3,4,5,7,9,13,14,15) . d(0,2,8)$.
(b) $\quad \mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E})=\Sigma \mathrm{m}(0,1,2,4,5,6,10,13,14,18,21,22,24,26,29,30)$. Simplify the function with help of K-map and realize the simplified function using basic logic gates.

