

PAPER ID-411826

Attempt all questions in brief.

Roll No:

BTECH (SEM III) THEORY EXAMINATION 2021-22 NETWORK ANALYSIS AND SYNTHESIS

Time: 3 Hours

1.

Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

 $2 \times 10 = 20$

 $10 \ge 3 = 30$

- a. Illustrate the admittance parameter of a two-port network.
- b. Describe the band stop filter with suitable example.
- c. Demonstrate time scaling property of Laplace transform.
- d. Describe the singularity function with suitable example.
- e. Demonstrate time convolution property of Fourier transform.
- f. Illustrate the drawback of Fourier Transform and how this drawback can be removed by using Laplace transform.
- g. Describe and state Thevenin's theorem with suitable example.
- h. Describe the following terms for a network: Graph, Tree, Co-Tree, and Twig.
- i. Use source transformation to solve *vo* in the circuit shown in figure 1.

j. When the voltage across a resistor is 120 V, the current through it is 2.5 mA. Calculate its conductance.

SECTION B

2. Attempt any *three* of the following:

a. Identify the node voltages in the circuit shown in figure 2.

QP22P2_082 | 31-Mar-2022 13:24:30 | 103.199.157.66

Roll No:

BTECH (SEM III) THEORY EXAMINATION 2021-22 NETWORK ANALYSIS AND SYNTHESIS

b. Find i_o in the circuit shown in the figure 3 using superposition.

d. Find the Laplace transform for the given signal.

$$x(t) = \begin{pmatrix} 1 - e^{-t} \\ t \end{pmatrix} u(t)$$

e. Illustrate the low pass filter. Derive the expression for transfer function of a low pass filter and plot the curve.

SECTION C

3. Attempt any *one* part of the following:

- (a) Describe the following terms with example.
 - i. Junction Point
 - ii. Node
 - iii. Branch
 - iv. Active and Passive Network
 - v. Linear and Non-Linear Network
- (b) Calculate the mesh currents i_1 and i_2 in the circuit shown in figure 4.

Figure 4

 $10 \times 1 = 10$

51.66

PAPER ID-411826

BTECH (SEM III) THEORY EXAMINATION 2021-22 NETWORK ANALYSIS AND SYNTHESIS

4. Attempt any *one* part of the following:

 $10 \ge 1 = 10$

(a) Using Norton's theorem, find R_N and I_N of the circuit shown in the figure 5.

Roll No:

(b) Find the value of R_L for the maximum power transfer in the circuit shown in the figure 6. Find the maximum power.

5. Attempt any *one* part of the following:

- (a) Demonstrate and prove the frequency convolution and time differentiation property of Fourier transform.
- (b) Find out the Fourier Transform of $x(t) = e^{-at}u(t)$. Also draw the magnitude and phase spectrum of the output.

6. Attempt any *one* part of the following:

- (a) Derive the expression for source free RLC circuit and discuss all three cases: Overdamped response, Underdamped response and critical damped response.
- (b) Find the Laplace transform for the given signal and calculate the ROC.

$$x(t) = t e^{-2|t|}$$

7. Attempt any *one* part of the following:

(a) Obtain the y parameters for the circuit shown in the figure 7.

Figure 7

(b) Illustrate the high pass filter. Derive the expression for transfer function of a high pass filter and plot the curve.

$10 \ge 1 = 10$

 $10 \ge 1 = 10$

 $10 \times 1 = 10$