\square

BTECH

(SEM I) THEORY EXAMINATION 2021-22
BASIC ELECTRICAL ENGINEERING
Time: 3 Hours
Total Marks: 100
Notes:

- \quad Attempt all Sections and Assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly.
SECTION-A Attempt All of the following Questions in brief Marks (10X2=20)

Q1(a) What is use of form factor and peak factor?
Q1(b) What is the ratio of no-load speed to full load speed of a $200 \mathrm{kVA}, 12$ poles, $2200 \mathrm{~V}, 3$ phase, 60 Hz synchronous motor?
Q1(c) Write Difference between EMF and Potential Difference
Q1(d) Define power factor
Q1(e) Is the superposition theorem valid for direct calculation of power? Explain briefly.
Q1(f) What is the need of commutator in DC generator?
Q1(g) Why is Transformer Ratings done in Volt Amperes (VA).
Q1(h) Draw the no load phasor diagram of a transformer
Q1(i) For heavy loads, What is the relation between torque (T) and slip (S) in induction motor.
Q1(j) What is the difference between asynchronous motor and synchronous motor?

SECTION-B Attempt ANY THREE of the following Questions	
Q2(a)	(i) Derive the emf equation of a transformer (ii) Derive the condition for maximum efficiency in single phase transformer
Q2(b)	i) List all the important parts of a D.C. Motor and explain the importance of each.. ii) Calculate the emf generated by 4 pole wave wound generator having 65 slots with 12 conductors per slot when driven at 1200 rpm. The flux per pole is 0.02 wb
Q2(c)	Using Thevenin theorem, find current in 1Ω resistor in the circuit shown in figure below:
Q2(d)	Use nodal analysis to find the voltage across and current through 4Ω resistor in Figure given below:
Q2(e)	Use superposition theorem to find current I in the circuit shown in Figure below. All resistance are in ohms.

\square
BTECH
(SEM I) THEORY EXAMINATION 2021-22
BASIC ELECTRICAL ENGINEERING

SECTION-C Attempt ANY ONE following Question
Q3(a) Reduce the network of Fig. 1 to obtain the equivalent resistance as seen between nodes ad.

Q3(b) With the help of Norton's theorem, find V_{6} in the circuit shown below. All resistances are in Ohms.

SECTION-C Attempt ANY ONE following Question

Q4(a) A series $\mathrm{R}-\mathrm{L}-\mathrm{C}$ circuit consists of $\mathrm{R}=1000 \mathrm{Ohm}, \mathrm{L}=100 \mathrm{mH}$ and $\mathrm{C}=10 \mu \mathrm{~F}$. The applied voltage across the circuit is 100 V .
(i) Find the resonant frequency of the circuit.
(ii) Find the quality factor of the circuit at the resonant frequency.
(iii) At what angular frequencies do the half power points occur?
(iv) Calculate the bandwidth of the circuit.

Q4(b) Three impedances of $(70.7+\mathrm{j} 70.7)$ Ohm, $(120+\mathrm{j} 160)$ Ohm and $(120+\mathrm{j} 90)$ Ohm are connected in parallel across a 250 V supply. Determine (i) admittance of the circuit (ii) supply current and (iii) circuit power factor.

SECTION-C Attempt ANY ONE following Question

Marks $(1 \times 10=10)$
Q5(a) A transformer on no-load has a core loss of 50 W , draws a current of 2 A and has an induced emf of 230 V . Determine the no-load power factor, core loss current and magnetizing current. Also, calculate the no-load circuit parameters of the transformer. Neglect winding resistance and leakage flux.
Q5(b) Explain the performance of principal of operation of single phase transformer.
\square
BTECH
(SEM I) THEORY EXAMINATION 2021-22
BASIC ELECTRICAL ENGINEERING

SECTION-C Attempt ANY ONE following Question
 Marks (1X10=10)

Q6(a) A 4-pole generator with 400 armature conductors has a useful flux of 0.04 Wb per pole. What is the emf produced if the machine is wave wound and runs at 1200rpm? What must be the speed at which the machine should be driven to generate the same emf if machine is lap wound?
Q6(b) An 8-pole, 400V shunt motor has 960 wave connected armature conductors. The full load armature current is 40 A and flux per pole is 0.02 Wb . The armature resistance is 0.1Ω and the contact drop is 1 V per brush. Calculate the full load speed of the motor.

SECTION-C Attempt ANY ONE following Question
 Marks (1X10=10)

Q7(a) (i) Explain the slip torque characteristics of the three-phase induction motor
(ii) The voltage applied to the stator of a three phase, 4 pole induction motor has frequency of 50 Hz . Th frequency of the emf induced in the rotor is 15.5 Hz . Determine the slip and speed at which motor is running.
Q7(b) (i) Write short notes on MCB and MCCB
(ii) Write short notes on characteristics of batteries.

