

Roll No:

BTECH (SEM III) THEORY EXAMINATION 2021-22 ELECTROMAGNETIC FIELD THEORY

Time: 3 Hours

Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably. **SECTION Ă**

1.	Attempt <i>all</i> questions in brief.	2 x 10	= 20	
Q no.	Question	Marks	CO	
a.	Find the value of $(3 \hat{a}_x + 6 \hat{a}_y) X (2 \hat{a}_x + 3 \hat{a}_y + 5 \hat{a}_z)$, where X denotes	2	1	
	cross product.			
b.	Find the unit vector of the vector $\vec{A} = (7 \ \hat{a}_x + 2 \ \hat{a}_y + 8 \ \hat{a}_z)$.	2	1	
c.	Explain Electric Field Intensity.	2	2	
d.	Prove that $\vec{\mathbf{E}} = -\mathbf{grad} \mathbf{V}$, where E is Electric Field Intensity and V is	2	2	
	Electric Potential.			
e.	Prove that curl $\vec{A}=0$, if $\vec{A}=(yz \ \hat{a}_x + zx \ \hat{a}_y + xy \ \hat{a}_z)$.	2	3	
f.	Narrate the concept of electric dipole moment.	2	3	
g.	Explain the term 'Inductance.'	2	4	
h.	Explain the concept of Magnetic Flux Density.	2	4	
i.	Explain the physical significance of Poynting vector.	2	5	C -
j.	Explain the reflection of a plain wave in a normal incidence.	2	5	60
	SECTION B			(·
2.	Attempt any <i>three</i> of the following:	3 x 10	= 30	~

SECTION B

2. Attempt any three of the following:

Q no.	Question	Marks	CO
a.	Given that $\vec{A} = \left(\frac{5r^2}{4}\right)\hat{a}_r$ is in spherical coordinates, solve both sides of	10	1
	the divergence theorem for the volume enclosed by $r = 4m$, and $\theta = \frac{\pi}{4}$		
	shown in below figure.		
	A, A.		
	4 m 45° $d\bar{s}$ $d\bar{s}$		
b.	Derive the mathematical expression for energy stored in electric field.	10	2
	If $V = yx^2 + zx + xy V$, Do the analysis of \vec{E} at (2, 3, 7) and the electrostatic energy stored in a cube of side 4m centered at origin.		
c.	Explain Biot-Savart's Law. Find the magnetic field intensity for infinite line current.	10	3
d.	Explain the ampere circuital law. Derive two applications of ampere circuital law. Also, derive modified maxwell's equations.	10	4
e.	Derive the mathematical equation for Poynting vector.	10	5

1 | Page

Roll No:

BTECH

(SEM III) THEORY EXAMINATION 2021-22 ELECTROMAGNETIC FIELD THEORY

SECTION C

3. Attempt any *one* part of the following:

$1 \ge 10 = 10$

Q no.	Question	Marks	CO	
a.	Investigate the values of X, Y, and Z. If $\vec{A} = (2 \hat{a}_x + 4 \hat{a}_y + 5 \hat{a}_z)$ is transformed	10	1	
	as $\vec{A} = (X \hat{a}_r + Y \hat{a}_{\theta} + Z \hat{a}_{\phi})$			
b.	Derive the Poisson's and Laplace equation in all coordinate systems.	10	1	
4.	Attempt any one part of the following:	1 x 10	= 10	
Q no.	Question	Marks	CO	
a.	Point charges 1 mC and -2 mC are located at (3, 2, -1) and (-1, -1, 4).	10	2	
	respectively. Calculate the electric force on a 10 nC charge located at	10	-	
	(0, 3, 1) and the electric field intensity at that point.			
b.	Given the potential $V = \frac{560}{3r^2} \sin 2\theta \cos \phi$,	10	2	
	Find the electric flux density D at $(2, 90^0, 0)$. Also calculate the work			
	done in moving a 10 μ C charge from point A (1, 30 ⁰ , 120 ⁰) to B (2, 60 ⁰ ,			
	30°).			~
5.	Attempt any <i>one</i> part of the following:	1 x 10	= 10	0
Q no.	Question	Marks	CO	
a.	Explain convection and conduction currents. Derive mathematical	10	3	
b.	What is magnetic dipole? Find magnetic vector potential. Explain the	110	3	
0.	complete Magnetic boundary conditions. Derive all tangential and	10	5	
	normal components.	2		
6.	Attempt any one part of the following:	1 x 10	= 10	
Q no.	Question	Marks	CO	
a.	Explain transformer and motional electromotive forces with necessary	10	4	
	mathematical expressions. If vector $\mathbf{A} = yx^2\mathbf{a}x + zx\mathbf{a}y + xy\mathbf{a}z$ is			
	expressed as, where ax , ay , and az are the unit vectors. Find the vector			
	B.			
b.	A charged particle of mass 2 kg and charge 3 C starts at point (1, -2, 0) with	10	4	
	velocity 4 \mathbf{a}_x +3 \mathbf{a}_z m/s in an electric field 12 \mathbf{a}_x +10 \mathbf{a}_y V/m. At time t=1 sec,			
	particles and its position			
7.	Attempt any <i>one</i> part of the following:	1 x 10	= 10	
0 20	Ouestion	Marks		
Q 110.	Explain uniform plana wava Dariya uniform plana wavas in lasslass		5	
a.	dialectrics. What is skin effect? Explain the Smith short in detail	10	3	
h	What is transmission line. Derive all the supporting mathematical	10	5	
0.	equations of the transmission line.	10	5	
1				