Time: 3 Hours

Total Marks: 100
Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.
$2 \times 10=20$

Q no.	Question	Marks	CO
a.	Find the value of $\left(3 \hat{a}_{x}+6 \hat{a}_{y}\right) \mathrm{X}\left(2 \hat{a}_{x}+3 \hat{a}_{y}+5 \hat{a}_{z}\right)$, where X denotes cross product.	2	1
b.	Find the unit vector of the vector $\vec{A}=\left(7 \hat{a}_{x}+2 \hat{a}_{y}+8 \hat{a}_{z}\right)$.	2	1
c.	Explain Electric Field Intensity.	2	2
d.	Prove that $\overrightarrow{\mathbf{E}}=-$ grad \mathbf{V}, where E is Electric Field Intensity and V is Electric Potential.	2	2
e.	Prove that curl $\vec{A}=0$, if $\vec{A}=\left(\mathrm{yz} \hat{a}_{x}+\mathrm{zx} \hat{a}_{y}+\mathrm{xy} \hat{a}_{z}\right)$.	2	3
f.	Narrate the concept of electric dipole moment.	2	3
g.	Explain the term 'Inductance.'	2	4
h.	Explain the concept of Magnetic Flux Density.	2	4
i.	Explain the physical significance of Poynting vector.	2	5
j.	Explain the reflection of a plain wave in a normal incidence.	2	5

SECTION B

2. Attempt any three of the following:
$3 \times 10=30$

Q no.	Question	Marks	CO
a.	Given that $\vec{A}=\left(\frac{5 r^{2}}{4}\right) \hat{a}_{r}$ is in spherical coordinates, solve both sides of the divergence theorem for the volume enclosed by $\mathrm{r}=4 \mathrm{~m}$, and $\theta=\frac{\pi}{4}$ shown in below figure.	1	

BTECH

SECTION C

3. Attempt any one part of the following: $\mathbf{1 \times 1 0}=\mathbf{1 0}$

Q no.	Question	Marks	CO
a.	Investigate the values of X, Y, and Z. If $\vec{A}=\left(2 \hat{a}_{x}+4 \hat{a}_{y}+5 \hat{a}_{z}\right)$ is transformed as $\vec{A}=\left(\mathrm{X} \hat{a}_{r}+\mathrm{Y} \hat{a}_{\theta}+\mathrm{Z} \hat{a}_{\phi}\right)$	10	1
b.	Derive the Poisson's and Laplace equation in all coordinate systems.	10	1

4. Attempt any one part of the following: $\quad 1 \times 10=10$

Q no.	Question	Marks	CO
a.	Point charges 1 mC and -2 mC are located at $(3,2,-1)$ and $(-1,-1,4)$, respectively. Calculate the electric force on a 10 nC charge located at $(0,3,1)$ and the electric field intensity at that point.	10	2
b.	Given the potential $V=\frac{560}{3 r^{2}} \sin 2 \theta \cos \phi$, Find the electric flux density D at $\left(2,90^{\circ}, 0\right)$. Also calculate the work done in moving a $10 \mu \mathrm{C}$ charge from point $\mathrm{A}\left(1,30^{\circ}, 120^{\circ}\right)$ to $\mathrm{B}\left(2,60^{\circ}\right.$, 30°).	10	2
	Attempt any one part of the following:	$1 \times 10=10$	
Q no.	Question	Marks	CO
a.	Explain convection and conduction currents. Derive mathematical equations also. Also derive the magnetic vector potential.		3
b.	What is magnetic dipole? Find magnetic vector potential. Explain the complete Magnetic boundary conditions. Derive all tangential and normal components.	10	3

Q no.	Question	Marks	CO
a.	Explain transformer and motional electromotive forces with necessary mathematical expressions. If vector $\mathbf{A}=y^{2} \mathbf{a x}+z \mathbf{z a y}+x y \mathbf{a z}$ is expressed as, where $\mathbf{a x}, \mathbf{a y}$, and $\mathbf{a z}$ are the unit vectors. Find the vector B.	10	4
b.	A charged particle of mass 2 kg and charge 3 C starts at point $(1,-2,0)$ with velocity $4 \mathbf{a}_{\mathbf{x}}+3 \mathbf{a}_{z} \mathrm{~m} / \mathrm{s}$ in an electric field $12 \mathbf{a}_{x}+10 \mathbf{a}_{\mathbf{y}} \mathrm{V} / \mathrm{m}$. At time $\mathrm{t}=1 \mathrm{sec}$, determine- the acceleration of the particle, its velocity, kinetic energy of the particles and its position.	10	4
7.	Attempt any one part of the following:	$1 \times 10=10$	
Q no.	Question	Marks	CO
a.	Explain uniform plane wave. Derive uniform plane waves in lossless dielectrics. What is skin effect? Explain the Smith chart in detail.	10	5
b.	What is transmission line. Derive all the supporting mathematical equations of the transmission line.	10	5

