

PAPER ID-411830

Roll No:

BTECH

(SEM III) THEORY EXAMINATION 2021-22

THERMODYNAMICS

Time: 3 Hours

Notes:

Total Marks: 100

- Attempt all Sections and Assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly.

SECTION-A	Attempt All of the following Questions in brief	Marks(10X2=20)	CO
Q1(a) Differe	ntiate microscopic and macroscopic point of view.		1
Q1(b) Define	the quasi static process?		1
Q1(c) Define	the second law efficiency and why PMM-II is not possible.		2
Q1(d) Disting	uish between high grade energy and low-grade energy?		2
Q1(e) Explain	the Joule-Thompson coefficient and Inversion curve?		3
Q1(f) Discuss	the triple point and critical point.		4
Q1(g) Define	the refrigeration effect and how it can be improved?		5
Q1(h) Explain	the dryness fraction and how it can be improved?		4
Q1(i) How th	e C.O.P of the vapor compression cycle can be improved?		5
Q1(j) Differe	ntiate between available and unavailable energy?		3

SECTION-B Attempt ANY THREE of the following Questions Marks(3X10=30)	CO		
Q2(a) A nozzle is a device for increasing the velocity of a steadily flowing stream. At the inlet to a	1		
certain nozzle, the enthalpy of the fluid passing is 3000 kJ/kg and the velocity is 60 m/s. At			
the discharge end, the enthalpy is 2762 kJ/kg. The nozzle is horizontal and there is			
negligible heat loss from it.	Λ		
(i) Find the velocity at exists from the nozzle.	$\langle \cdot \rangle$		
(ii) If the inlet area is 0.1 m2 and the specific volume at inlet is 0.187 m3/kg, find the mass	S.		
flow rate.			
Q2(b) A heat pump working on the Carnot cycle takes in heat from a reservoir at 5°C and deliver			
heat to a reservoir at 60°C. The heat pump is driven by a reversible heat engine which takes			
in heat from a reservoir at 840°C and rejects heat to a reservoir at 60°C. The reversible heat			
engine also drives a machine that absorbs 30 kW. If the heat pump extracts 17 kJ/s from the			
5°C reservoir, determine			
(i) The rate of heat supply from the 840°C source			
(ii) The rate of heat rejection to the 60°C sink.			
) Write down the first and second T-dS equations and derive the expression for the difference 3			
in heat capacities, Cp and Cv.			
d) Define in pure substance by suitable phase change diagram the term (i) Triple Point (ii)			
Critical Point (iii) Saturation states (iv) Sub cooled state (v) Superheated vapour state.			
Q2(e) The atmospheric air pressure 1 bar and temperature -5° C is drawn in the cylinder of the	5		
compressor of Bell Coleman refrigerating machine. It is compressed isentropically to a			
pressure of 5 bar. In the cooler the compressed air is cooled to 15 ^o C, pressure remaining the			
same. It is then expanded to a pressure of 1 bar in an expansion cylinder from where it is			
passed to the cold chamber. Calculate			
(i)The work done per kg of air			
(ii) C.O.P of the plant			
For air assume law for expansion $PV^{1,2}$ =Constant:			
law for compression is $PV^{1.4}$ =Constant			
specific heat of the air at constant pressure is 1 KJ/Kg-K			
SECTION-C Attempt ANY ONE following Question Marks (1X10=10)	CO		
$Q_3(a)$ The internal energy of a certain substance is given by the following equation	1		

BTECH

Roll No:

(SEM III) THEORY EXAMINATION 2021-22 THERMODYNAMICS

	i. It	f the expansion is quasi static find $Q,\Delta U$ and W for the process	
		n another process the same expands according to the same pressure -volume	
		elationship as in part (i) and from the same initial state to the same final state as in	
	part (i), but the heat transfer in this case is 30 KJ. Find the work transfer for this		
	р	rocess.	
		Explain the difference in work transfer in parts (i) and (ii)	
Q3(b)	For a san	nple of air having 22^0 DBT, relative humidity 30 % at barometric pressure of 760 4	4
mm of Hg calculate (i) Vapour pressure			
	(ii) Humidity ratio. (iii) Vapour density and (iv) Enthalpy		
	Verify y	yours results by psychometric chart.	
SECT	ION-C	Attempt ANY ONE following QuestionMarks (1X10=10)	CO
Q4(a)	Steam at	20 bar 360° C is expanded in a steam turbine to 0.08 bar. It then enters a 4	4

Q4(a)	Steam at 20 bar 360° C is expanded in a steam turbine to 0.08 bar. It then enters a	4
	condenser, where it is condensed to a saturated liquid water. The pump feeds back the water	
	in to the boiler (i) Assuming ideal processes, find the per kg of steams of the network and	
	the cycle efficiency (ii) If the turbine and the pump have each 80% efficiency ,find the	
	percentage reduction in the network and cycle efficiency.	
Q4(b)	Prove that :	3

 $C_P - C_v = -T(\partial V / \partial T)_p^2 (\partial P / \partial V)_T$

SECT	ION-C Attempt ANY ONE following Question	Marks (1X10=10) CO	
	State the Clapeyron equation and discuss its importance durin		
	substance. Derive the equation for Clausius-Clapeyron equation fo	r evaporation of liquids.	
Q5(b)	A vapour compression refrigeration system uses R-12 refrigerant,	and the liquid evaporates 5	
	in the evaporator at – 15°C. The Temperature of this refrigerant at	the delivery from the	
	compressor is 15 °C when the vapour is condensed at 10°C. Find the coefficient of		
	performance (i) If there is no under cooling and (ii) the liquid is cooled by 5°C before		
	expansion by throttling.	0.5	
		\sim	

SECTION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO
	(a) Draw a neat diagram of lithium bromide water absorption system and explain its working.		5
List the ma	jor field of applications of this system.	•	
	(i) One kg of water at 273 K is brought in to contact with a heat reservoir at 373 K When the		
water has r	water has reached 373 K, find the entropy change of the water of the heat reservoir and of		
the universe	the universe		
	(ii) If the water is heated from 273 K to 373 K by firs bringing		
It in conta	It in contact with a reservoir at 323 K and then with a reservoir at 373 K, what will the		
opy change	opy change of the universe be?		
(iii) Explain	n how water might be heated from 273 to 373 K with alm	ost no change in the	
opy of the u	iniverse.		

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO
Q7(a)	A gas undergoes a thermodynamic cycle consisting of the following 1		1	
	(i) Process 1-2 is isochoric heat addition of 325.235 KJ/kg			
	(ii) Process 2-3 adiabatic expansion to its original pressure with loss of 70 KJ/kg in internal energy			
	(iii) Process 3-1 isobaric compression to its original volume with heat rejection of 200 KJ/kg			
		Prepare a balance sheet of energy quantities and find the ovycle	rerall changes during the	
Q7(b)	Show that	the Kelvin-Planck and the Clausius statement of the seco	nd law of	2
	thermodynamics are equivalent.			