Roll No: \square
BTECH
(SEM III) THEORY EXAMINATION 2021-22
THERMODYNAMICS
Time: 3 Hours
Total Marks: 100
Notes:

- Attempt all Sections and Assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly.

SECTION-A Attempt All of the following Questions in brief		Marks(10X2=20)	CO
Q1(a)	Differentiate microscopic and macroscopic point of view.	1	
Q1(b)	Define the quasi static process?	1	
Q1(c)	Define the second law efficiency and why PMM-II is not possible.	2	
Q1(d)	Distinguish between high grade energy and low-grade energy?	2	
Q1(e)	Explain the Joule-Thompson coefficient and Inversion curve?	3	
Q1(f)	Discuss the triple point and critical point.	4	
Q1(g)	Define the refrigeration effect and how it can be improved?	5	
Q1(h)	Explain the dryness fraction and how it can be improved?	4	
Q1(i)	How the C.O.P of the vapor compression cycle can be improved?	5	
Q1(j)	Differentiate between available and unavailable energy?	3	

SECTI	ION-B	Attempt ANY THREE of the following Questio	Marks(3X10=30)	CO
Q2(a)	A nozzle is a device for increasing the velocity of a steadily flowing stream. At the inlet to a certain nozzle, the enthalpy of the fluid passing is $3000 \mathrm{~kJ} / \mathrm{kg}$ and the velocity is $60 \mathrm{~m} / \mathrm{s}$. At the discharge end, the enthalpy is $2762 \mathrm{~kJ} / \mathrm{kg}$. The nozzle is horizontal and there is negligible heat loss from it. (i) Find the velocity at exists from the nozzle. (ii) If the inlet area is 0.1 m 2 and the specific volume at inlet is $0.187 \mathrm{~m} 3 / \mathrm{kg}$, find the mass flow rate.			1
Q2	A heat heat to in heat engine $5^{\circ} \mathrm{C}$ res (i) The (ii) The	working on the Carnot cycle takes in heat from a rvoir at $60^{\circ} \mathrm{C}$. The heat pump is driven by a revers a reservoir at $840^{\circ} \mathrm{C}$ and rejects heat to a reservoir drives a machine that absorbs 30 kW . If the heat pu r, determine of heat supply from the $840^{\circ} \mathrm{C}$ source of heat rejection to the $60^{\circ} \mathrm{C}$ sink.	${ }^{\circ} \mathrm{C}$ and delivers ine which takes reversible heat $17 \mathrm{~kJ} / \mathrm{s}$ from the	2
Q2	Write in hea	the first and second T-dS equations and derive th cities, Cp and Cv .	for the difference	3
Q2	Define Critica	ure substance by suitable phase change diagram the int (iii) Saturation states (iv) Sub cooled state (v) S	le Point (ii) pour state.	4
Q2(e)	The atm compre pressur same. passed (i)The (ii) C For air law f specific	eric air pressure 1 bar and temperature $-5^{\circ} \mathrm{C}$ is dr of Bell Coleman refrigerating machine. It is comp bar. In the cooler the compressed air is cooled to en expanded to a pressure of 1 bar in an expansio cold chamber. Calculate k done per kg of air of the plant me law for expansion $P V^{1.2}=$ Constant: mpression is $\mathrm{PV}^{1.4}=$ Constant of the air at constant pressure is $1 \mathrm{KJ} / \mathrm{Kg}-\mathrm{K}$	linder of the pically to a re remaining the m where it is	5

SECTION-C Attempt ANY ONE following Question \quad Marks (1X10=10)	CO	
Q3(a)	The internal energy of a certain substance is given by the following equation $\mathrm{u}=3.56 \mathrm{pv}+84$, where u is given in $\mathrm{KJ} / \mathrm{Kg}, \mathrm{P}$ is in KPa and v is in $\mathrm{m}^{3} / \mathrm{kg}$ A system composed of 3 kg of this substance expands from an initial pressure of 500 KPa and a volume of $0.22 \mathrm{~m}^{3}$ to a final pressure 100 KPa in a process in which pressure and volume are related by $\mathrm{PV}^{1.2}=$ Constant	1

Roll No: \square

BTECH

(SEM III) THEORY EXAMINATION 2021-22

THERMODYNAMICS

SECTION-C Attempt ANY ONE following Question Marks (1X10=10) CO

Q4(a) Steam at 20 bar $360^{\circ} \mathrm{C}$ is expanded in a steam turbine to 0.08 bar. It then enters a 4 condenser, where it is condensed to a saturated liquid water. The pump feeds back the water in to the boiler (i) Assuming ideal processes, find the per kg of steams of the network and the cycle efficiency (ii) If the turbine and the pump have each 80% efficiency, find the percentage reduction in the network and cycle efficiency.
Q4(b) Prove that:
$\mathrm{C}_{\mathrm{P}}-\mathrm{C}_{\mathrm{V}}=-\mathrm{T}(\partial \mathrm{V} / \partial \mathrm{T})_{\mathrm{p}}{ }_{\mathrm{p}}(\partial \mathrm{P} / \partial \mathrm{V})_{\mathrm{T}}$

SECTION-C Attempt ANY ONE following Question Marks (1X10=10) CO

Q5(a) State the Clapeyron equation and discuss its importance during phase change of pur substance. Derive the equation for Clausius-Clapeyron equation for evaporation of liquids.
Q5(b) A vapour compression refrigeration system uses R -12 refrigerant, and the liquid evaporates in the evaporator at $-15^{\circ} \mathrm{C}$. The Temperature of this refrigerant at the delivery from the compressor is $15^{\circ} \mathrm{C}$ when the vapour is condensed at $10^{\circ} \mathrm{C}$. Find the coefficient of performance (i) If there is no under cooling and (ii) the liquid is cooled by $5^{\circ} \mathrm{C}$ before expansion by throttling.
SECTION-C Attempt ANY ONE following Question \quad Marks (1X10=10) CO

Q6(a) Draw a neat diagram of lithium bromide water absorption system and explain its working. List the major field of applications of this system.
Q6(b) (i) One kg of water at 273 K is brought in to contact with a heat reservoir at 373 K When the 2 water has reached 373 K , find the entropy change of the water of the heat reservoir and of the universe
(ii) If the water is heated from 273 K to 373 K by firs bringing

It in contact with a reservoir at 323 K and then with a reservoir at 373 K , what will the opy change of the universe be?
(iii) Explain how water might be heated from 273 to 373 K with almost no change in the opy of the universe.

SECTION-C \quad Attempt ANY ONE following Question	Marks (1X10=10)	CO
Q7(a)	A gas undergoes a thermodynamic cycle consisting of the following (i) Process 1-2 is isochoric heat addition of $325.235 \mathrm{KJ} / \mathrm{kg}$ (ii) Process 2-3 adiabatic expansion to its original pressure with loss of $70 \mathrm{KJ} / \mathrm{kg}$ in internal energy (iii) Process 3-1 isobaric compression to its original volume with heat rejection of 200 KJ/kg Prepare a balance sheet of energy quantities and find the overall changes during the cycle	1
Q7(b)	Show that the Kelvin-Planck and the Clausius statement of the second law of thermodynamics are equivalent.	2

