Roll No: \square

BTECH

(SEM III) THEORY EXAMINATION 2021-22

ENGINEERING MECHANICS

Time: 3 Hours
Total Marks: 100
Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

| 1. Attempt all questions in brief. | $\mathbf{2 \times 1 0}=\mathbf{2 0}$ |
| :--- | :--- | :--- |

Q no.	Question	Marks	CO
a.	What is the difference between collinear and concurrent forces?	2	1
b.	Define the Limiting angle of friction.	2	1
c.	What is truss? Explain its types.	2	2
d.	Define the types of loads \& supports in a beam.	2	2
e.	Define Mass moment of inertia \& Area moment of inertia.	2	3
f.	What do you mean by types of motion?	2	3
g.	Explain D'Alembert's principle with suitable example.	2	4
h.	Define the longitudinal \& lateral strain.	2	4
i.	What do you mean by pure bending in beams?	2	5
j.	Define a shaft \& torsional rigidity.	2	5

SECTION B

2. Attempt any three of the following:

| Q no. | Question | Marks | CO |
| :--- | :--- | :--- | :--- | :--- |
| a. | Four forces act tangentially to a circle of radius 200 mm as shown in figure.
 Find the magnitude, inclination \& distance of the resultant from center of
 circle. | 10 | 1 |

Roll No: \square

BTECH

(SEM III) THEORY EXAMINATION 2021-22
ENGINEERING MECHANICS

SECTION C

3. Attempt any one part of the following:

Q no.	Question	Marks	CO
a.	A ladder 7 m long rests against a vertical wall with which is makes an angle $45^{\circ} \& ~ r e s t i n g ~ o n ~ a ~ f l o o r . ~ I f ~ a ~ m a n ~ w h o s e ~ w e i g h t ~ i s ~ o n e ~ h a l f ~ o f ~ t h a t ~ t h e ~ l a d d e r ~$	10	1
$2 \mid \mathrm{Page}$			

Roll No: \square
BTECH
(SEM III) THEORY EXAMINATION 2021-22

ENGINEERING MECHANICS

4. Attempt any one part of the following:

Q no.	Question	Marks	CO
a.	Determine the magnitude and nature of forces in members EF, FC and CB of the truss shown in figure.	$\cdot 10$	2
b.	Draw the shear force \& bending moment diagram for the beam shown in figure also find out the value of maximum bending moment \& position of point of contraflexure.	10	2

\square
BTECH
(SEM III) THEORY EXAMINATION 2021-22

ENGINEERING MECHANICS

5. Attempt any one part of the following:

Q no.	Question	Marks	O
a.	Determine the moment of inertia of the ' L ' section with respect to centroidal $\mathrm{X}-\mathrm{X}$ axis. Section as shown in figure.	10	3
b.	Derive an expression for mass moment of inertia about axis of symmetry for a right solid circular cone.	10	3

6. Attempt any one part of the following:

7. Attempt any one part of the following:

Q no.	Question	Marks	CO
a.	Derive the Bending equation for pure bending in beams with assumptions. Also define the neutral axis \& section modulus for a beam.	10	5
b.	Calculate the suitable diameter for a solid circular shaft to transmit 60 kW power at 200 rpm, if the twist is not to exceed 2^{0} in 3 m length of the shaft and maximum shear stress is limited to $70 \mathrm{MN} / \mathrm{m}^{2}$. Take shear modulus $\mathrm{G}=90$ GPa.	10	5

