

						Pri	ntec	l Pa	ge: 1	of 2
				S	ubje	ect (Code	: K	AS2	01T
Roll No:										

BTECH (SEM II) THEORY EXAMINATION 2021-22 ENGINEERING PHYSICS

Time: 3 Hours Total Marks: 100

Notes:

- Attempt all Sections and assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly.

SECT	ION-A	Attempt All of the following Questions in brief	Marks(10X2=20)	CO
Q1(a)	What is fr	ame of reference in motion?		1
Q1(b)	Show that	massless particles can exist only if the they move w	ith the speed of light	1
	and their e	energy E and momentum p must have the relation E=	pc.	
Q1(c)	In an elect	romagnetic wave, the electric and magnetic fields an	re 100V/m and	2
	0.265 A/m	. What is the maximum energy flow		
Q1(d)	Define the	concept of Skin depth for high and low frequency v	vaveforms.	2
Q1(e)	What is C	ompton effect and Compton shift?		3
Q1(f)	Why is bla	ack the best emitter?		3
Q1(g)	Why the c	enter of Newton's ring in reflected system is dark?		4
Q1(h)	Explain R	ayleigh's criterion of resolution.		4
Q1(i)	Q1(i) What do you mean by acceptance angle and cone for an optical fiber?			
Q1(j)	Differenti	ate spontaneous emission and stimulated emission.		50

SECT	ION-B	Attempt ANY THREE of the following Questions	Marks(3X10=30)	CO
Q2(a)	What is sp	pecial theory of relativity? Derive Lorentz transforma	ation equation.	1
Q2(b)	Assuming	that all the energy from a 1000 watt lamp is radiated	l uniformly; calculate	2
	the averag	ge values of the intensities of electric and magnetic fi	elds of radiation at a	
	distance o	of 2m from lamp.	20.	
Q2(c)	Calculate	the energy difference between the ground state and t	he first excited state	3
	for an elec	ctron in a one-dimensional rigid box of length 25Å.		
Q2(d)	Newton's	rings are observed in reflected light of wavelength 5	900A ⁰ . The diameter	4
	of 10 th daı	rk ring is 0.50cm. Find the radius of curvature of the	lens.	
Q2(e)	A step ind	lex fibre has $\mu_1 = 1.466$ and $\mu_2 = 1.46$ where μ_1 and μ_2	are refractive indices	5
	of core an	d cladding respectively. If the operating wavelength	of the rays is 0.85 μm	
	and the di	ameter of the core = $50 \mu m$, calculate the cut-off para	ameter and the number	
	of modes	which the fibre will support.		

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO
Q3(a)	What was	the object of conducting Michelson-Morley exp	eriment? Illustrate the	1
	experimer	nt with proper diagram and necessary mathematical	derivations. Also state	
	the outcor	1 1		
		00/		
Q3(b)	Deduce E	instein's mass –energy relation E= mc ² . Give some e	evidence showing its	1
	validity.	7		

SECT	TION-C Attempt ANY ONE following Question	Marks (1X10=10)	CO
Q4(a)	Deduce the Maxwell's equations for free space and pr	ove that electromagnetic	2
	waves are transverse in nature.		
	Define radiation pressure and momentum of electromagnet	ic wave. Also determine	2
	an expression for radiation pressure and momentum.		

				S	ubje	ect (Code	: K	AS2	01T
Roll No:										

Printed Page: 2 of 2

BTECH (SEM II) THEORY EXAMINATION 2021-22 ENGINEERING PHYSICS

SECT	ON-C Attempt ANY ONE following Question Marks (1X10=10)	CO
Q5(a)	What is the physical significance of a wave function? Derive Schrodinger time	3
	independent wave equation.	
Q5(b)	What is Compton effect? Deduce an expression for Compton shift.	3

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO		
	a diffract	ayleigh criterion of resolution how one can increase on grating? Using Rayleigh criterion for just res	solution show that the			
	resolving power of grating is equal to nN, where n is the order of the spectrum, and N is total no of lines on the grating.					
		ne phenomena of Fraunhofer diffraction at a single tensities of the successive maximum are nearly 1:		4		

ļ		
SECTION-C		
	on optical fibre with a core diameter large enough has a core refractive index of 1	50 5
	eladding refractive index 1.47. Determine	1
	critical angle at the core cladding interface,	0-
	numerical aperture for the fibre	9.2
(111) the	e acceptance angle in air for the fibre.	Duty 5
Q7(b) What	do you mean by population inversion? Describe the principle and working of lystem with the help of neat diagram.	Kuby 3
lasers	or with the help of neat diagram.	