Printed Page: 1 of 2 Subject Code: KAS203T

Roll No:

BTECH

(SEM II) THEORY EXAMINATION 2021-22

ENGINEERING MATHEMATICS-II

Time:3 Hours Notes-

Total Marks:100

- Attempt all sections and assume any missing data. ۰
- Appropriate marks are allotted to each question, answer accordingly. •

SECTION -A		Attempt all of following question in brief	Marks (10×2=20)	CO
Q.1(a)	Find the differential equation which represents the family of straight lines passing through the origins?			1
Q.1(b)	State the criterion for linearly independent solutions of the homogeneous linear nth order differential equation.		1	
Q.1(c)	Evaluate: $\int_0^1 \frac{dx}{\sqrt{-\log x}}$.			2
Q.1(d)	Find the volume of the solid obtained by rotating the ellipse $x^2 + 9y^2 = 9$ about the <i>x</i> -axis.			2
Q.1(e)	Test the seri	$\sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{1}{n}.$		3
Q.1(f)	Find the cor	istant term when $f(x) = 1 + x $ is expanded in Fourier set	ries in the interval (-3, 3).	3
Q.1(g)	Show that <i>f</i>	$(z) = z + 2\overline{z}$ is not analytic anywhere in the complex plan	ne.	4
Q.1(h)	Find the ima	age of $ z - 2i = 2$ under the mapping $w = \frac{1}{z}$.	0.	4
Q.1(i)	Expand $f(z$	$) = e^{z/(z-2)}$ in a Laurent series about the point $z = 2$.	<u>.</u>	5
Q.1(j)	Discuss the	nature of singularity of $\frac{\cot \pi z}{(z-a)^2}$ at $z = a$ and $z = \infty$.		5

SECTION -B		Attempt any three of the following questions	Marks (3×10=30)	CO
Q.2(a)	Solve: $\frac{d^2x}{dt^2}$ +	$-\frac{dy}{dt} + 3x = e^{-t}$, $\frac{d^2y}{dt^2} - 4\frac{dx}{dt} + 3y = \sin 2t$.		1
Q.2(b)	Assuming F	$\ln \Gamma(1-n) = \pi \operatorname{cosec} n\pi, \ 0 < n < 1$, show that $\int_0^\infty \frac{x^{p-1}}{1+x} dx = 0$	$= \frac{\pi}{\sin n\pi} ; 0$	2
Q.2(c)	Test the seri	$\operatorname{res} \frac{x}{1.2} + \frac{x^2}{3.4} + \frac{x^3}{5.6} + \frac{x^4}{7.8} + \dots \dots$		3
Q.2(d)	If $f(z) = u$ $f\left(\frac{\pi}{2}\right) = \frac{3}{2}$	+ iv is an analytic function, find $f(z)$ in term of z if $u - v = \frac{i}{2}$.	$\frac{e^{y} - \cos x + \sin x}{\cosh y - \cos x}$ when	4
Q.2(e)	Evaluate by	contour integration: $\int_0^{2\pi} e^{-\cos\theta} \cos(n\theta + \sin\theta) d\theta$; $n \in I$.		5

 \sim

Roll No:

BTECH

(SEM II) THEORY EXAMINATION 2021-22 ENGINEERING MATHEMATICS-II

SEC'	TION -C	Attempt any one of the following questions	Marks (1×10=10)	CO
Q.3(a)	Use the vari	ation of parameter method to solve the differential equation		1
		$(D^2 - 1)y = 2(1 - e^{-2x})^{-1/2}$		
Q.3(b)	Solve: (1 +	$x)^{2}\frac{d^{2}y}{dx^{2}} + (1+x)\frac{dy}{dx} + y = 4\cos\log(1+x).$		1

SECTION -C		Attempt any one of the following questions	Marks (1×10=10)	CO
Q.4(a)	The arc of the cardioid $r = a(1 + \cos \theta)$ included between $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$ is rotated about the line $=\frac{\pi}{2}$. Find the area of surface generated.		2	
Q.4(b)	Evaluate ∭ the variables	$fxyz \sin(x + y + z)dx dy dz$, the integral being extended to a subject to the condition $+y + z \le \frac{\pi}{2}$.	ll positive values of	2

SEC	ГІОN -C	Attempt any one of the following questions	Marks (1×10=10)	СО
Q.5(a)	Test for con	vergence of the series $\frac{a+x}{1!} + \frac{(a+2x)^2}{2!} + \frac{(a+3x)^3}{3!} + \dots$		3
Q.5(b)	Obtain Four	ier series for the function $f(x) = \begin{cases} 1 + \frac{2x}{\pi}, & -\pi < x < 0\\ 1 - \frac{2x}{\pi}, & 0 < x < \pi \end{cases}$	0 ³ .	3
	Tience dedu	$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{5^2} + \frac{1}{8} + \frac{1}{8$		
		O,	0	

SEC	CTION -C	Attempt any one of the following questions	Marks (1×10=10)	CO
Q.6(a)	Prove that we the image of	$v = \frac{z}{1-z}$ maps the upper half of the z-plane onto upper half of the circle $ z = 1$ under this transformation?	ne w-plane. What is	4
Q.6(b)	Find a bilinear transformation which maps the points $i, -i, 1$ of the z -plane into $0, 1, \infty$ of the w - plane respectively.		4	

SECTION -C		Attempt any one of the following questions	Marks (1×10=10)	CO
Q.7(a)	Evaluate \oint_c	$\frac{e^z}{z(1-z)^3}dz$, where c is (i) $ z = \frac{1}{2}$ (ii) $ z-1 = \frac{1}{2}$ (iii) $ z $	= 2 .	5
Q.7(b)	Find the Tay $(ii) 2 < z $	ylor's and Laurent's series which represent the function $\frac{z^2-1}{(z+2)(z+3)}$ < 3 (<i>iii</i>) $ z > 3$.	$\frac{1}{2}$ when (<i>i</i>) $ z < 2$	5