

					Pri	inted	l Pa	ge: 1	of 2	j
				Sub	ject	Cod	le: F	CE	2402	
Roll No:										

BTECH (SEM IV) THEORY EXAMINATION 2021-22 INTRODUCTION TO SOLID MECHANICS

Time: 3 Hours Total Marks: 100

Notes:

- Attempt all Sections and Assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly.

SECT	ION-A Attempt All of the following	Questions in brief	Marks (10 X2=20)	CO	
Q1(a)	Q1(a) Define stress and strain				
Q1(b) State Hook's law					
Q1(c) Define point of contraflexure or point of inflexion.					
Q1(d)	Q1(d) Explain Shear force and bending Moment				
Q1(e)	What is section modulus (Z)? What is the value of Bending moment in terms of			3	
	section modulus?				
Q1(f)	Define Torsional Rigidity			3	
Q1(g)	What are the different methods of fin	ding slope and deflection	of cantilever	4	
Q1(h)	What do you understand by the term "Buckling" of columns			4	
Q1(i)	Write the relation between hoop stress and longitudinal stress for thin cylinder				
Q1(j)	What is the difference between thin and thick cylinder				

SECT	ION-B	Attempt ANY THREE of the following Questions	Marks (3X10=30)	CO
Q2(a)	Explain th	ne stress-strain diagram for a ductile material under to	ension. A load of 5KN) 1
	is to be ra	ised with the help of a steel wire. Find the diameter of	of steel wire, if the	
	maximum	stress is not to exceed 100 MN/m ²	000	
Q2(b)	Derive the	e relation between shear force, bending moment and	loading	2
Q2(c)	A simply	supported rectangular beam with symmetrical section	n 200mm in depth has	3
	moment of inertia of 2.26 x 10 ⁻⁵ m ⁴ about its neutral axis. Determine the longest			
	span over which the beam would carry a uniformly distributed load of 4KN/m run			
	such that	the stress due to bending does not exceed 125 MN/m	2	
Q2(d)	A hollow	cylindrical column, with both ends hinged, is 6 m lor	ng, and has an outer	4
	diameter (of 120 mm and an inner diameter of 80 mm. Calculat	e the crippling load	
	by Euler's	s and Rankine's formulae. $E = 80,000 \text{ N/mm}^2$ and σ_c	$= 550 \text{ N/mm}^2$. The	
	Rankine o	constant = 1/1600		
Q2(e)	Derive the	e expression for hoop stress and longitudinal stress in	case of thin cylinder	5

SEC	TION-C	Attempt ANY ONE following Question	Marks (1 X10=10)	CO		
Q3(a	The state	of stress at a point in a loaded component principal	stress is found to be as	1		
	given bel	ow: $\sigma_x = 50 \text{ GN/m}^2$; $\sigma_y = 150 \text{ GN/m}^2$; $\tau_{xy} = 100 \text{ GN/m}^2$	GN/m ² ; Determine the			
	principal s	stresses and maximum shearing stress. Find the orien	ntations of the principal			
	planes.	, G				
Q3(b		A steel bar is subjected to loads as shown in fig. Determine the change in length of the bar ABCD of 18 cm diameter. $E = 180 \text{ kN/mm}^2$				
	_50	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				

Printed Page: 2 of 2
Subject Code: KCE402
Roll No:

BTECH (SEM IV) THEORY EXAMINATION 2021-22 INTRODUCTION TO SOLID MECHANICS

SECT	TION-C Attempt ANY ONE following Question Marks (1X10=10)	CO			
	Draw the SF and BM diagrams for the loaded beam 40 kN 20 kN/m 80 kN m 1 m C 1 m D 4 m E 2 m F 2 m	2			
Q4(b)	Draw the SF and BM diagrams for the loaded beam 20kN 40kN 20KN/m A 3m 2m	2			
OF OF	VON G. ANY ONE CHI CO.	CO			
	TION-C Attempt ANY ONE following Question Marks (1X10=10)	CO			
ŲΣ(a)	Derive the Torsional equation $T/J = \pi/R = G\theta/L$. Write the assumption made in deriving the torsional formulas?				
Q5(b)	The cross section of a beam is a T section of overall depth 140 mm, width of flange				
	200mm, thickness of flange 40mm and thickness of web 20mm. Draw the shear stress				
	distribution diagram if it carries a shear force of 60 kN.				
	~~				
CECT	TON-C Attempt ANY ONE following Question Marks (1X10=10)	CO			

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO
Q6(a)	Derive the differential equation for the elastic curve. A cantileve		ver beam is subjected	4
	to a concentrated load W at the free end, it is required to determine the maximum			
	deflection of the beam			
Q6(b)	Derive Eu	ler critical buckling load for columns with both the e	nds hinged. A steel rod	4
	5 m long a	and of 40 mm diameter is used as a column, with on	end fixed and the other	
	free. Dete	rmine the crippling load by Euler's formula. Take E	as 200 GPa	

SECTION-C		Attempt ANY ONE following Question	Marks (1 X10=10)	CO
Q7(a)	Q7(a) Write down the assumption in Lame's theory and also derive Lame's equation for			5
	circumferential stress and radial stress for thick cylinder			
Q7(b)	A composite spring has two close coiled helical springs connected in series, each			5
	spring has 12 coils at a mean diameter of 25 mm. Find the diameter of the wire in one			
	of the springs if the diameter of the wire in the other spring is 2.5 mm and stiffness of			
	the composite spring is 700 N/m. Estimate the greatest load that can be carried by the			
	composite	spring for a maximum shearing stress of 180MPa.	Take G= 80 GPa	