Roll No:

\square

INTRODUCTION TO SOLID MECHANICS

Time: 3 Hours
Total Marks: 100
Notes:

- Attempt all Sections and Assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly.

SECTION-C Attempt ANY ONE following Question \quad Marks (1X10=10) CO
Q3(a) The state of stress at a point in a loaded component principal stress is found to be as 1 given below: $\sigma_{\mathrm{x}}=50 \mathrm{GN} / \mathrm{m}^{2} ; \sigma_{\mathrm{y}}=150 \mathrm{GN} / \mathrm{m}^{2} ; \tau_{\mathrm{xy}}=100 \mathrm{GN} / \mathrm{m}^{2}$; Determine the principal stresses and maximum shearing stress. Find the orientations of the principal planes.
Q3(b) A steel bar is subjected to loads as shown in fig. Determine the change in length of the bar ABCD of 18 cm diameter. $\mathrm{E}=180 \mathrm{kN} / \mathrm{mm}^{2}$

Roll No:

QECTION-C Attempt ANY ONE following Question Q4(a) Draw the SF and BM diagrams for the loaded beam
Q4(b)
Draw the SF and BM diagrams for the loaded beam

SECTION-C Attempt ANY ONE following Question Marks (1X10=10) CO

Q7(a) Write down the assumption in Lame's theory and also derive Lame's equation for 5 circumferential stress and radial stress for thick cylinder
Q7(b) A composite spring has two close coiled helical springs connected in series, each5 spring has 12 coils at a mean diameter of 25 mm . Find the diameter of the wire in one of the springs if the diameter of the wire in the other spring is 2.5 mm and stiffness of the composite spring is $700 \mathrm{~N} / \mathrm{m}$. Estimate the greatest load that can be carried by the composite spring for a maximum shearing stress of 180 MPa . Take $\mathrm{G}=80 \mathrm{GPa}$

