\square

BTECH

(SEM IV) THEORY EXAMINATION 2021-22 HYDRAULIC ENGINEERING AND MACHINES

Time: 3 Hours
Total Marks: 100
Notes:

- Attempt all Sections and Assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly.

SECTION-A Attempt All of the following Questions in brief	Marks (10X2=20)	CO
Q1(a)	Define specific energy and total energy.	1
Q1(b)	Distinguish between pipe flow and open channel flow.	1
Q1(c)	Distinguish between most economical and most efficient channel.	2
Q1(d)	Explain GVF.	2
Q1(e)	Explain hydraulic jump with the help of a diagram.	3
Q1(f)	Define surges in open channel.	3
Q1(g)	Explain Speed ratio and Jet ratio of a Pelton turbine.	4
Q1(h)	Define pumps.	4
Q1(i)	Define reaction turbine with the help of a suitable example.	5
Q1(j)	Define specific speed of a turbine.	5

SECTION-C Attempt ANY ONE following Question Marks (1X10=10) CO

Q4(a)	A rectangular channel has a width of 2 m and carries a discharge of $4.8 \mathrm{~m}^{3} / \mathrm{sec}$ with a depth of 1.6 m . At a certain section a small smooth hump with a flat top and of height 0.5 m is proposed to be built. Neglect energy loss. i. Calculate the water surface elevation on the hump. ii. Calculate the minimum size of hump to cause critical flow over the hump.	2

Q4(b) A rectangular channel is 3.5 m wide and conveys a discharge of $15 \mathrm{~m}^{3} / \mathrm{s}$ at a depth of 2 m . It is proposed to reduce the width of the channel at a hydraulic structure. Assuming the transition to be horizontal and the flow to be frictionless, determine the water surface elevation upstream and downstream of the constriction when the constricted width is: (i) 2.5 m , (ii) 2.2 m .

Roll No: \square

BTECH

(SEM IV) THEORY EXAMINATION 2021-22 HYDRAULIC ENGINEERING AND MACHINES

| SECTION-C Attempt ANY ONE following Question | Marks (1X10=10) | CO |
| :--- | :--- | :---: | :---: |
| Q5(a) | Derive an expression for sequent depth ratio and energy loss in a hydraulic jump for a
 rectangular channel. | 3 |
| Q5(b) | A horizontal rectangular channel 4 m wide carries a discharge of $16 \mathrm{~m}^{3} / \mathrm{s}$. Determine
 whether a jump may occur at an initial depth of 0.5 m or not. If a jump occurs,
 determine the sequent depth to this initial depth. Also determine the energy loss in the
 jump. | 3 |

SECTION-C Attempt ANY ONE following Question	Marks (1X10=10)	CO
Q6(a)	Explain in detail the working of a reciprocating pump with the help of a suitable diagram.	4
Q6(b)	A nozzle of 50 mm diameter delivers a stream of water at $20 \mathrm{~m} / \mathrm{s}$ perpendicular to a plate that moves away from the jet at $5 \mathrm{~m} / \mathrm{s}$. Calculate: i. Force on the plate ii. Work done iii. Efficiency of the jet	4

SECTI	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO
Q7(a)	Illustrate draft tubes and its types with the help of a suitable diagram. Prove that the pressure at the inlet of the draft tube is less than atmospheric pressure.			
Q7(b)	A Pelto KW, H to exce i. Whee ii. No. iii. Dia Take K	wheel is to be designed for the followin $\mathrm{d}=380 \mathrm{~m}$, Speed $=750 \mathrm{rpm}$, Overall E one-sixth of wheel diameter (D). Deter diameter Jets required ter of Jets. $=0.985$ and $\mathrm{Ku}_{1}=0.45$.	t Power $=117$ diameter (d)	

