Printed Page: 1 of 2

Subject Code: KCE601

PAPER ID-420860

Roll No:

BTECH

(SEM VI) THEORY EXAMINATION 2021-22

DESIGN OF CONCRETE STRUCTURES

Time: 3 Hours

Notes:

Total Marks: 100

3

5

- Attempt all Sections and Assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly. IS 456:2000 ALLOWED

	-				
SECT	ION-A	Attempt All of the following Questions in brief	Marks (10X2=20)	CO	
Q1(a)	What are the disadvantages of R.C.C. structures?				
Q1(b)	Write the	data required for Design mix concrete.		1	
Q1(c)	Draw crac	k pattern in simply supported beams.		2	
Q1(d)	Where bo	and stress developed in a steel bar and concrete?		2	
Q1(e)	Draw the	neat sketch of reinforcement in one way slab.		3	
Q1(f)	Define lar	iding and riser.		3	
Q1(g)	With neat	sketch define axially loaded column.		4	
Q1(h)) Why all columns shall be designed for minimum eccentricity?				
Q1(i)	Write the purpose of foundation in a structure?				
Q1(j)) Which cases retaining walls constructed?				
		-0.			
SECT	ION-B	Attempt ANY THREE of the following Questions	Marks (3X10=30)	CO	
Q2(a)	Find the moment of resistance of a R.C.C. beam 300 mm wide and 500 mmm			1	
	effective depth is required is reinforced with 3 bars of 16 mm. Use M20 concrete				
	and Fe415 steel. By Working stress method.				
Q2(b)	An R.C.C .beam 200 mm x 400 mm effective carries a uniformly distribute load of			2	
	70 kN/m o	over a clear span of 6m. The beam is reinforced with	1% steel on tension		
	side comr	nent on the shear design of the beam. Using m20 cor	crete and load factor		

Q2(c) Write the design steps of one way slab.

Q2(d)	Classify the column	s for material o	of construction.	Why R.C.C.	column are used	Τ
	instead of plain cem	ent concert?		- +		

Q2(e) A brick masonry wall 230 mm thick carries a load of 370 kN/m incusive of its own weight . Design the footing of the wall , take bearing capacity of soil as 150 kN/m² at 1 m depth. Use M20 concrete. For strip footing.

 SECTION-C
 Attempt ANY ONE following Question
 Marks (1X10=10)
 CO

 Q3(a)
 A simply supported R.C.C. beam 250 mm wide and 450 mm deep (effective) is reinforced with 4-18 mm diameter bars. Design shear reinforcement if M20 grade of concrete and Fe415 steel is used and beam is subjected to a shear force of 150 kN at service load.
 1

 Q3(b)
 Write the design steps of simply supported beam, check all codal regirements
 1

Q3(b)	Write the	design step	os of simp	ly st	upported	beam.	check a	ll codal	reqi	rements

SECTION-C Attemp		Attempt ANY ONE following Question	Marks (1X10=10)	CO	
Q4(a) Write the design procedure of RCC beam subjected to equivalent shear force and					
	equivalent bending moment.				
Q4(b)	Q4(b) An RCC beam 250 mm x 500 mm has a clear span of 5.5 m. The beam has 2-20				
	mm dia bars going on supports, Factored shear force is 140 kN. Check for				
	developm	ent length if Fe415 and M20 grade of concrete is use	d. Take effective		
	cover 30 1	nm.			

Printed Page: 2 of 2 Subject Code: KCE601

Roll No:

BTECH

(SEM VI) THEORY EXAMINATION 2021-22

DESIGN OF CONCRETE STRUCTURES

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO			
Q5(a)	Design a s	simply supported roof slab for a room 7.5 m x 3.5 m	clear in size . The slab	3			
	is carrying an imposed load of 5 kN/m ² . Use M20 Concrete and Fe415 steel. And						
	also check	for deflection					
Q5(b)	Calculate	the long term deflection of a simply supported beam	n 300 mm x 600 mm	3			
	spanning	over 5 m. It is reinforced with 4 bars of 20 mm dian	neter on tensile side. It				
	is subjecte	ed to an imposed service load of 20 kN/m including :	its self. The effective				
	cover to te	ension steel is mm. Use M 20 and Fe415 . $I_{eff} = 3.613$	$87 \text{ X } 10^9 \text{ mm}^4$,				
	$\Delta e = 2.011$	mm.					
SECT		Attempt ANV ONE following Question	$M_{\rm order} (1 \times 10 - 10)$	CO			
O6(a)	Design a g	where RCC column to carry an axial load of 160 kN	$\frac{\text{Marks}(\mathbf{I}\mathbf{A}\mathbf{I}0-\mathbf{I}0)}{\text{It is } I \text{ m long}}$	4			
Q0(u)	effectively	the beld in position and restrained against rotation at h	oth ends. Use M20				
	concrete a	nd Fe415 steel. Show the reinforcement detail	oth ends. Ose 10120				
O6(h)	Find the uniform donth of rootengular footing of uniform thickness for an axially						
20(0)	loaded column of size 300 mm x 600 mm load on column is 1150 kN. Safe bearing						
	capacity of the soil is 200 kiN/m^2 Use M20 concrete and Fe415 steel (i) By one						
	way shear criteria (ii) By B M criteria						
way shear chiefia (ii) by b.ivi. chiefia.							
SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO			
Q7(a)) With neat sketch explain the deflected shape of a cantilever retaining wall under						
	loading for Stem, Heel slab, Toe slab						
Q7(b)	Check for stability condition of cantilever retaining wall to retain horizontal			5			
	earthen embankment of height 4 m above the ground level. The earthen backfill is						
	having a density of 18 Kn/m ³ and angle of repose is 30° . The safe bearing capacity						
	of soil is 180 kN/m^2 . The coefficient of friction between soil and concrete is 0.45.						
	Use M20 and Fe415.						

Leen soil and con