Roll No. \square

B. TECH
 (SEM-III) THEORY EXAMINATION 2022-23
 DIGITAL SYSTEM DESIGN

Time: 3 Hours
Total Marks: 100
Note: Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.
$2 \times 10=20$
(a) Explain Minterm and Maxterm with example.
(b) Design and draw State Diagram for a 2 bit up/down counter
(c) Convert (454.523) $)_{10}$ to an Hexadecimal number
(d) Draw a full adder using two half adders
(e) What do you mean by race around condition in JK Flip Flop?
(f) Describe figure of merit \& noise immunity of TTL \& CMOS ICs
(g) What is the basic concept of switched capacitors.
(h) Explain FAN-IN and FAN-OUT.
(i) What are the advantages and disadvantages of flash type ADC
(j) What is the difference between Multiplexer and Encoder

SECTION B

2. Attempt any three of the following:
(a) What is magnitude comparator? Design a Single-bit comparator circuit using logic gates.
(b) Give the general procedure for converting a multilevel AND-OR diagram into an all NAND diagram. Implement the following Boolean function with NAND gates only.

$$
F(x, y, z)=\sum(1,2,3,4,5,7)
$$

(c) With neat diagram explain the operation of R-2R DAC
(d) Design a universal shift register that performs HOLD, SHIFT RIGHT, SHIFT LEFT, \& LOAD operations.
(e) Draw and Explain a NAND gate in Totem Pole TTL Configuration.

SECTION C

3. Attempt any one part of the following:
(a) Simplify the logic function using K-map

$$
\mathrm{Y}=\sum \mathrm{m}(0,2,3,4,6,7,9,11,16,18,19,20,22,23,25,27)
$$

(b) Implement the function $\mathrm{F}=\sum \mathrm{m}(0,1,3,4,7,8,9,11,14,15)$ using $8: 1$ mux.
4. Attempt any one part of the following: $10 \times 1=10$
(a) Design a 3 bit up/down ripple counter
(b) Draw and explain the dual slope analog to digital convertor.
5. Attempt any one part of the following: $10 \times 1=10$
(a) Minimize $y=\sum \mathrm{m}(0,1,2,3,5,6,7,8,14,15)+\mathrm{d}(4,11,13)$ using tabular method.
(b) Explain a Weighted Resistor digital to analog convertor.
6. Attempt any one part of the following: $10 \times 1=10$
(a) Explain Decoder with neat diagram. Implement the logic expression $\mathrm{Y}=\Sigma \mathrm{m}(2,4,6,7)$ using decoder as ROM.
(b) Design a sequential circuit with two Flip Flops, A \& B and one input x . When $\mathrm{x}=0$, the State of the circuit remains the same when $x=1$ the circuit passes through the state transitions from 00 to 01 to 11 to 10 back to $00 \&$ repeat.
7. Attempt any one part of the following:
(a) Draw CMOS inverter circuit and explain its working.
(b) Define PLD's. Implement the following function using PLA
$\mathrm{F} 1=\sum \mathrm{m}(0,3,4,7)$
$\mathrm{F} 2=\sum \mathrm{m}(1,2,5,7)$

