Roll No: \square
(SEM IV) THEORY EXAMINATION 2021-22
ANALOG CIRCUITS
Time: 3 Hours
Total Marks: 100
Note: Attempt all Sections. If you require any missing data, then choose suitably.

SECTION A

1. Attempt all questions in brief. $\quad \mathbf{2 \times 1 0}=\mathbf{2 0}$

Qno	Questions	CO
(a)	Define stability factor for a biasing scheme.	1
(b)	Draw the high frequency model of BJT.	1
(c)	Define the efficiency of power amplifiers.	2
(d)	If open loop gain of an amplifier is 1000 and feedback factor of the system is .01, calculate the closed loop gain for negative feedback.	2
(e)	Define a stable and monostable multivibrator.	3
(f)	Explain the Barkhausen's Criterion for oscillators.	3
(g)	The output impedance of a current mirror should be infinite, justify the statement.	4
(h)	If iffferential mode gain of a differential amplifier is 1000 and common mode gain is 10 calculate the CMRR in decibel for it.	4
(i)	Explain the concept of virtual short in operational amplifier.	5
(j)	List the properties of an ideal operational amplifier.	5

2. Attempt any three of the following:

SECTION B

SECTION C

3. Attempt any one part of the following:

$$
10 \times 1=10
$$

Qno	Questions	CO

(a) Derive the expressions for input impedance, output impedance, open circuit CO voltage gain, overall voltage gain and short circuit current gain after completing the AC analysis of common emitter amplifier with emitter resistance.

4. Attempt any one part of the following:
$10 \times 1=10$

Qno	Questions	CO
(a)	Explain the various feedback topologies, with their circuit models and properties.	2
(b)	Discuss the working of class B power amplifiers with its efficiency and nonlinearity. Also discuss the remedy of nonlinear distortion associated with class B power amplifier.	2Ω

| Attempt any one part of the following: | Questions | CO |
| :--- | :--- | :--- | :--- |
| Qno | Explain the operation of astable multivibrator with circuit and output
 waveforms. Also design an astable multivibrator which can generate a square
 wave of 10 KHz frequency. | 3 |
| (b) | Explain the working of a tank circuit. Also derive the frequency of oscillation
 and condition of gain to get sustained oscillations for Golpitts oscillator. | 3 |

6. Attempt any one part of the following:
$10 \times 1=10$

Qno	Questions	CO
(a)	Derive the mathematical expressions for common mode gain, differential mode gain, input impedance and CMRR for differential amplifier.	4
(b)	Explain the transfer characteristics of differential amplifier. Also derive the necessary mathematical expression required for it.	4

7. Attempt any one part of the following:
$10 \times 1=10$

Qno	Questions	CO		
(a)	Design a circuit usìng a single operational amplifier for the following mathematical operations: $(\boldsymbol{V} \mathbf{1}$ i. and $\boldsymbol{V}_{\mathbf{2}}$ are the available inputs) i. $\quad \boldsymbol{V}_{\mathbf{0}}=\mathbf{4} \boldsymbol{V}_{\mathbf{1}}+\mathbf{3} \boldsymbol{V}_{\mathbf{2}}$	5		
ii. $\quad \boldsymbol{V}_{\mathbf{0}}=\mathbf{2} \boldsymbol{V}_{\mathbf{1}}-\mathbf{5} \boldsymbol{V}_{\mathbf{2}}$			\quad	State the advantage of Super diode. Explain the operation of precision full
:---				
wave rectifier with proper circuit and output waveform.				

