Roll No: \square

B. Tech.

(SEM V) THEORY EXAMINATION 2021-22
 DIGITAL SIGNAL PROCESSING

Time: 3 Hours
Total Marks: 100
Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.
a. Define the Recursive and Non-Recursive systems.
b. Enlist the Condition for Linear Phase FIR digital filter with 5 Number of samples.
c. Differentiate Butterworth Low Pass Filter with Chebyshev LPF in terms of Filter Order.
d. Evaluate the value of $\mathrm{C}_{3}(\mathrm{x})$, Chebyshev Polynomial.
e. Demonstrate the term Gibb's Phenomenon with schematic diagram.
f. Explain the terms Truncation Error \& Round off Error with suitable examples.
g. Evaluate the DFT for the sequence [1, 2, 7, 3].
h. Find out the total no of Complex additions and Complex multiplications required for calculating 8 -point Conventional DFT \& by using butterfly structure DIT-FFT.
i. Explain the term Decimation with suitable example.
j. Find the output of the sequence [1 233]after up sampling by a factor $\mathrm{N}=3$.

SECTION B

2. Attempt any three of the following:
$10 \times 3=30$
a. Realize the given $\mathrm{H}(\mathrm{z})$ for using ladder structure.

$$
H(z)=\frac{2+8 z^{-1}+6 z^{-2}}{1+8 z^{-1}+12 z^{-2}}
$$

b. Design Digital Butterworth filter to satisfy the following constraints using bilinear transformation method, the sampling Interval is 2 second: assume missing data if required:

$$
0.52 \leq\left|\begin{array}{ll}
\mathrm{H}\left(\mathrm{e}^{\mathrm{jw}}\right) \\
\mathrm{H}\left(\mathrm{e}^{\mathrm{jw}}\right)
\end{array}\right| \leq \mathbf{1} \quad, \quad, 0 \leq \mathrm{0} \leq \pi / 2
$$

c. Explain the concept of the Limit Cycle Oscillations \& dead band effect with suitable example.
d. Calculate the circular convolution using graphical method for $x(n)=[1,2,3,4]$ and $h(n)=[4,3,2,1]$.
e. Summarize QMF \& Explain analytical and synthesis filter bank with aliasing free filter bank.

SECTION C

3. Attempt any one part of the following:
$10 \times 1=10$
(a) Describe the linear phase FIR systems, \&For $h(n)=[1 / 2,1 / 3,1 / 5,1 / 3,1 / 2]$ Realize H(z) of the Linear Phase FIR system for the given impulse response.
(b) Find out the direct form-I \& direct form-II realization of a discrete-time system represented by the transfer function
\square

$$
y(n)=-\frac{13}{12} y(n-1)-\frac{9}{24} y(n-2)-\frac{1}{24} y(n-3)+x(n)+4 x(n-1)+3 x(n-2)
$$

4. Attempt any one part of the following:
$10 \times 1=10$
(a) Design Chebyshev Digital LPF filter to satisfy the following constraints using Impulse Invariant method.
(b) Design Chebyshev Digital LPF filter to satisfy the following constraints using Bilinear Transformation method, assume that the sampling time is one second.

$$
\left\lvert\, \begin{aligned}
0.707 \leq\left|\mathbf{H}\left(\mathrm{e}^{\mathrm{jw} w}\right)\right| \leq 1 & , 0 \leq w \leq 0.2 \pi \\
\mathbf{H}\left(\mathrm{e}^{\mathrm{jw}}\right) \mid \leq 0.1,0.5 \pi \leq \mathbf{w} \leq \pi &
\end{aligned}\right.
$$

5. Attempt any one part of the following:
(a) A low Pass filter is to be designed with the following specifications:

$$
H_{d}\left(e^{j w}\right)=\left\{\begin{array}{rc}
e^{-2 j w} & ,-\pi / 4 \leq w \leq \pi / 4 \\
0 & , \text { otherwise }
\end{array}\right.
$$

Using Rectangular window function, Find the Filter coefficients \& Frequency spectrum of the designed filter.
(b) Design a Filter with

$$
H_{d}\left(e^{j w}\right)=\left\{\begin{array}{cl}
e^{-3 j w} & ,-\pi / 4 \leq \mathrm{w} \leq \pi / 4 \\
0 & , \pi / 4 \leq \mathrm{w} \leq \pi
\end{array}\right.
$$

Using Hamming window with $\mathrm{M}=7$.
6. Attempt any one part of the following:
$10 \times 1=10$
(a) Using DIF FFT find $\mathrm{X}(\mathrm{k})$, for $\mathbf{x}(\mathbf{n})=\mathbf{2}^{\mathbf{n + 1}}$, for $\mathbf{N}=\mathbf{8}$.
(b) Derive \&solve the DIT FFT algorithm for 8 numbers of samples.
7. Attempt any one part of the following:
(a) Explain the block diagrammatic presentation of DSP processor, with its architecture, addressing formats and its commercial usages.
(b) Write a short note on LMS Algorithm.

