

				Sub	ject	Coc	le: F	KEC	601
Roll No:									

Printed Page: 1 of 2

BTECH (SEM VI) THEORY EXAMINATION 2021-22 DIGITAL COMMUNICATION

Time: 3 Hours Total Marks: 100

Notes:

- Attempt all Sections and Assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly.

SECT	ION-A Attempt All of the following Questions in brief Man	rks(10X2=20)	CO								
Q1(a)	Q1(a) A die is thrown. Determine the probability that an even number comes up.										
Q1(b) Define random variable.											
Q1(c)	Briefly explain inter symbol interference.		2								
Q1(d)	Draw waveform for NRZ- unipolar code for 101101.		2								
Q1(e)	For an ideal binary ASK, data is transmitted with 64kbps, find the bandw	idth.	3								
Q1(f)	Discuss the application of ASK modulation.		3								
Q1(g)	Briefly explain any one property of a matched filter.		4								
Q1(h)	Define bit error rate.		4								
Q1(i)	Briefly explain information.		5								
Q1(j)	Find the entropy for three messages with their probabilities ½,	1/4 and 1/4	5								
	respectively.										

SECT	ON-B Attempt ANY THREE of the following Questions Marks (3X10=30)	CO
Q2(a)	he probability density function is given as $f_x(x) = ae^{-b/x}$, where X is a) 1
	andom variable, whose allowable values range from $x = -\infty$ to $x = +\infty$.	
	ind:	
	i) Relationship between a and b	
	ii) Autocorrelation	
Q2(b)	Vrite Short Notes on any two of the following: i) Various NRZ line coding of data 11001101 ii) Eye diagram ii) Cross Salari de authorous listetion are active.	2
Q2(c)	ii) Gram-Schmidt orthogonalization procedure xplain the PSK modulation and demodulation with suitable block diagram and	3
	vaveforms. Compare the BPSK system with DPSK system.	
Q2(d)	Describe matched filter with suitable diagram? Prove that impulse response of a natched filter is proportional to a shifted version of the input signal to which filter is natched?	4
Q2(e)	Define entropy and mutual information? Prove the relationship between different intropies $I(XY) = H(X/Y) + H(Y)$	5

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO
Q3(a)	Differenti	ate between wide sense stationary and strict sen	nse stationary random	1
	processes'	? Find the mean and variance of the sum of two r	andom variables if the	
	mean of o	one of the two random variables is zero. Assume the	ne random variables as	
	per conve	nience.		
Q3(b)	Discuss C	aussian random process with central limit theorem	along with a suitable	1
	example a	nd diagram.		

PAPER ID-420394	

					Pri	inted	l Pa	ge: 2	2 of 2	j
				Subject Code: KEC601						
Roll No:										

BTECH (SEM VI) THEORY EXAMINATION 2021-22 DIGITAL COMMUNICATION

SECT	ON-C Attempt ANY ONE following Question Marks (1X10=	10)	CO						
Q4(a)	(a) Explain the function of scrambler and descrambler with neat block diagram. Give an								
	example with a sequence generated.								
Q4(b)	Draw and explain function of each block in digital communication system. A	lso	2						
	state the need of pulse shaping.								

SECTION-C		Attempt ANY ONE following Question	Marks (1X10=10)	CO					
Q5(a)	How does the QPSK modulator transmit digital data over channel? Also explain the								
	demodula	demodulation process of the QPSK modulated signal from an ideal channel.							
Q5(b)	Explain Q	AM system with suitable block diagram and constel	lation diagram.	3					

SECT	ION-C	Attempt ANY ONE following Question Marks (1X10=1							
Q6(a)	Derive the	expression for probability of error in FSK modula	ation system. Mention	4					
	all the assumed parameters clearly. Why is it better than ASK?								
Q6(b)	Describe t	ne spread spectrum modulation with FHSS and DSSS	S.	4					

SECT	ION C	Attoment	ANY ONE	f ₀ 11.		~ ()	aatia)((1V10_10)	CO
	ION-C		ANY ONE						31	1	1 '	Marks (1X10=10)	CO
Q/(a)	7(a) The parity check matrix of a particular (7,4) linear block code is given by:												9
	$[H] = \begin{bmatrix} 1 & 0 & 1 & 1 & : & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & : & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & : & 0 & 0 & 1 \end{bmatrix}$											2.	
	$[H] = \begin{bmatrix} 1 & 1 & 0 & 1 & : & 0 & 1 & 0 \end{bmatrix}$												
							_					~ ₀ ,	
				0	1	1	1	:	0	0	1		
	i) Find the generator matrix (G).												
	ii) List all the code vectors.												
	iii) What is the minimum distance between code vectors?												
Q7(b)	Construct Huffman codes for five messages m ₁ , m ₂ , m ₃ , m ₄ and m ₅ with											5	
	probabilit	ies 0.062	5,0.125,0.2	25, 0	.062	5 an	d 0	.5, 1	resp	ectiv	ely.	Calculate the entropy	
	and average	ge length	of the cod	e. Al	lso e	xpla	in tł	ne p	roce	edure	for	finding the code.	
		5 6							. (٦.,			
								7					
						()					
						C-1							
						(0)							
)							
13.06.2022													