

Roll No:

BTECH

(SEM VI) THEORY EXAMINATION 2021-22 ANTENNA AND WAVE PROPAGATION

Time: 3 Hours

Total Marks: 100

2*10 = 20

Note: Attempt all Sections. If you require any missing data, then choose suitably.

SECTION A

1. Attempt *all* questions in brief.

CO Ono Questions Define irrotational fields. (a) 1 Define divergence. (b) 1 Discuss electric field intensity. 2 (c) Discuss the nature of magnetic flux of lines. 2 (d) Discuss solid angle and beam area. 3 (e) 3 List the various parameter of principal radiation pattern (f) Design a log periodic antenna. 4 (g) 4 Examine the major advantage of folded dipole antenna. (h) Determine critical frequency for reflection at vertical incidence if the 5 (i) maximum value of electron density is 1.24*10⁻⁶cm⁻³? (j) Illustrate surface wave propagation

2. Attempt any *three* of the following:

Qno	Questions	CO
(a)	Illustrate Stokes theorem and Divergence Theorem.	1
(b)	Demonstrate the magnetic field due to a finite line conductor having current I.	2
(c)	Derive antenna temperature and its relation with the signal to noise ratio	3
	(SNR) of the given antenna.	
(d)	Analyze Horizontal antennas above a plane ground.	4
(e)	Demonstrate Skip distance and optimum frequency.	5

SECTION C

3. Attempt any *one* part of the following:

10*1 = 10

Qno	Questions	СО
(a)	Illustrate line, surface and volume integrals.	1
(b)	Describe the significance of the curl of a vector.	1

4. Attempt any *one* part of the following:

10 * 1 = 10

Qno	Questions	CO
(a)	Demonstrate dielectric –dielectric and dielectric free space boundary conditions for magnetic fields.	2

010*3 = 30

Printed Page: 2 of 2 Subject Code: KEC603

Roll No:

BTECH

(SEM VI) THEORY EXAMINATION 2021-22

ANTENNA AND WAVE PROPAGATION

(b) A circular ring of radius *a* carries a uniform charge ρ_L C/m and is placed on 2 the xy-plane with axis the same as the z-axis. Demonstrate:

(a) The electric field due to this ring at a height h along its axis.
(b) What value of h gives the maximum value of electric field?
If the total charge on the ring is *Q*. Find electric as radius of the ring tends to zero.

5. Attempt any *one* part of the following:

Qno	Questions	CO
(a)	Explain Friss transmission formula mathematically.	3
(b)	Explain fields from oscillating dipoles. Describe directivity of an antenna and	3
	find the relationship between directivity and gain of antenna.	

6. Attempt any *one* part of the following:

Qno	Questions	CO	
(a)	Demonstrate the fields of a short dipole.	4	
(b)	Demonstrate the radiation pattern of an array of 8 isotropic point sources separated by $\lambda/2$ distance and in phase with the help of pattern multiplication.	4	3

7. Attempt any *one* part of the following:

Qno	Questions	CO
(a)	Illustrate the skip distance for region between transmitter and receiver using	5
	sky wave propagation, when curvature of earth is taken into consideration.	
(b)	Illustrate the expression for refractive index of ionosphere and critical	5
	frequency.	
	20,06,2022	

10*1 = 10

10*1 = 10

10*1 = 10