Roll No: \square
BTECH
(SEM IV) THEORY EXAMINATION 2021-22
DIGITAL ELECTRONICS
Time: 3 Hours
Total Marks: 100
Note: 1. Attempt all Sections. If require any missing data; then choose suitably.
SECTION A

1. Attempt all questions in brief.

Q no.	Question	$\mathbf{1 0}=\mathbf{2 0}$
a.	Identify the value of x in the expression $(56.1 \mathrm{~A})_{16}=(x)_{8}$.	1
b.	Perform the subtraction $(101101-100110)_{2}$ using 2's complement method.	1
c.	Compare serial adder and parallel adder.	2
d.	What is difference between combinational and sequential circuits.	2
e.	The content of 4 bit register is initially 1101. The register is sifted six time to right with the serial input being 101101. What is the content of the register after sixth shift?	3
f.	If in an edge triggered JK flip flop, J=1, K=1 and Q=1, when the clock pulse goes HIGH, what would be the next sate of Q.	3
g.	Define critical race and non-critical race conditions.	4
h.	Differentiate synchronous and asynchronous sequential circuits.	4
i.	Write the advantage and disadvantages of TTL and CMOS logic family	5
j.	Explain fan-in and fan-out in logic families.	5

SECTION B

2. Attempt any three of the following:

10*3 = 30

Q no.	Question	CO
a.	Simplify the following Boolean function using K-map and also draw the simplified logic circuit using basic logic gates. $f(A, B, C, D)=\sum_{m}(0,1,5,6,12,13,14)+d(2,4)$	1
b.	Implement the function $Y(A, B, C, D)=\sum_{m}(0,1,2,5,8,13,14)$ using $8: 1$ multiplexer. Consider A, B, C as the select lines.	2
c.	Differentiate between synchronous and asynchronous counters. Design a 2 bit synchronous UP counter.	3
d.	An asynchronous sequential circuit with two excitation function with two feedback loop is given as: $Y_{1}=x y_{1}+\overline{x y} y_{2} ; Y_{2}=x \bar{y}_{1}+\bar{x} y_{2}$ (i) \quadDraw the logic diagram of the circuit. (ii) Derive the transition table \& obtain the flow table	4
e.	Differentiate RAM and ROM. Explain various types of ROM.	5

SECTION C

3. Attempt any one part of the following: $10 * 1=10$

Q no.	Question	CO
a.	Explain Error detecting and Error correcting codes. A seven-bit Hamming code coming out of a transmission line is 1000010. What was the original code transmitted? Consider the even parity check.	1
b.	Express the design of Ex-OR gate with the help of (i) NAND gates only and (ii) NOR gates only	1

Roll No:

\square
BTECH
(SEM IV) THEORY EXAMINATION 2021-22
DIGITAL ELECTRONICS
4. Attempt any one part of the following:
$10 * 1=10$

Q no.	Question	CO
a.	Explain the design of a Full adder, with its truth table and Boolean expression.	2
b.	Design a Binary Code to Gray code Converter, Also show its truth table, Boolean expression and logic diagram.	2

5. Attempt any one part of the following:
$10 * 1=10$

Q no.	Question	CO
a.	Discuss the Race around condition of JK flip flop. How JK flip-flop can be used as T flip-flop, Explain the design procedure.	3
b.	Analyze RS flip -flop using NAND-NAND logic and obtain its characteristic equation and excitation table. Explain how will you convert it in D Flip-flop.	3

6. Attempt any one part of the following:
$10 * 1=10$

Q no.	Question			
a.	Implement the circuit defined by the following transition table with a NOR SR Latch. Also show the implementation with NAND SR latch.	4		

7. Attempt any one part of the following:
$10 * 1=10$

Q no.	Question	CO
a.	Explain PLA and PAL. Implement the given Boolean function with a PLA. $Y_{1}(A, B, C)=\sum_{m}(4,5,7) ; \quad Y_{2}(A, B, C)=\sum_{m}(3,5,7)$	5
b.	Construct the following logic gates from NMOS and PMOS logic Families (i) NAND (ii) NOR	5

