

Roll No:

BTECH

(SEM IV) THEORY EXAMINATION 2021-22

DIGITAL ELECTRONICS

Time: 3 Hours

Total Marks: 100

2 * 10 = 20

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

Attempt all questions in brief. 1.

Q no.	Question	CO
a.	Identify the value of x in the expression $(56.1A)_{16} = (x)_8$.	1
b.	Perform the subtraction (101101-100110) ₂ using 2's complement method.	1
c.	Compare serial adder and parallel adder.	2
d.	What is difference between combinational and sequential circuits.	2
e.	The content of 4 bit register is initially 1101. The register is sifted six time to right with the serial input being 101101. What is the content of the register after sixth shift?	3
f.	If in an edge triggered JK flip flop, J=1, K=1 and Q=1, when the clock pulse goes HIGH, what would be the next sate of Q.	3
g.	Define critical race and non-critical race conditions.	4
h.	Differentiate synchronous and asynchronous sequential circuits.	4
i.	Write the advantage and disadvantages of TTL and CMOS logic family	5
j.	Explain fan-in and fan-out in logic families.	5

SECTION B

2. Attempt any *three* of the following:

10*3 = 30Q no. Question CO Simplify the following Boolean function using K-map and also draw the 1 a. simplified logic circuit using basic logic gates. $f(A, B, C, D) = \sum_{m} (0, 1, 5, 6, 12, 13, 14) + d(2, 4)$ Implement the function $Y(A, B, C, D) = \sum_{m} (0, 1, 2, 5, 8, 13, 14)$ using 8:1 b. 2 multiplexer. Consider A, B, C as the select lines. c. Differentiate between synchronous and asynchronous counters. Design a 2 3 bit synchronous UP counter. An asynchronous sequential circuit with two excitation function with two d. 4 feedback loop is given as: $Y_1 = xy_1 + \overline{x}y_2$, $Y_2 = x\overline{y}_1 + \overline{x}y_2$ Draw the logic diagram of the circuit. (i) Derive the transition table & obtain the flow table (ii) Differentiate RAM and ROM. Explain various types of ROM. 5 e.

SECTION C

3. Attempt any one part of the following:

10*1 = 10

Q no.	Question	CO
a.	Explain Error detecting and Error correcting codes. A seven-bit Hamming	1
	code coming out of a transmission line is 1000010. What was the original	
	code transmitted? Consider the even parity check.	
b.	Express the design of Ex-OR gate with the help of	1
	(i) NAND gates only and (ii) NOR gates only	

Roll No:

BTECH

(SEM IV) THEORY EXAMINATION 2021-22 DIGITAL ELECTRONICS

4.	A	ttempt any <i>one</i> part of the following: 10*1 =	= 10
	Q no.	Question	CO
	a.	Explain the design of a Full adder, with its truth table and Boolean expression.	2
	b.	Design a Binary Code to Gray code Converter, Also show its truth table,	2
		Boolean expression and logic diagram.	

5.	Α	ttempt any <i>one</i> part of the following: 10*1 =	10
	Q no.	Question	CO
	a.	Discuss the Race around condition of JK flip flop. How JK flip-flop can be	3
		used as T flip-flop, Explain the design procedure.	
	b.	Analyze RS flip –flop using NAND-NAND logic and obtain its characteristic equation and excitation table. Explain how will you convert it in D Flip-flop.	3

6. A	Attempt any <i>one</i> part of the following: 10*1 =	= 10	
Q no.	Question	CO	N
a.	Implement the circuit defined by the following transition table with a NOR SR Latch. Also show the implementation with NAND SR latch. x_1x_2 $y \begin{array}{c} 00 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	4	??h
b.	Write the design procedure for clocked sequential circuits and implement the following state diagram.	4	

7.	A	ttempt any <i>one</i> part of the following: 10*1	l = 10
	Q no.	Question	СО
	a.	Explain PLA and PAL. Implement the given Boolean function with a PLA.	5
		$Y_1(A, B, C) = \sum_{m} (4, 5, 7); Y_2(A, B, C) = \sum_{m} (3, 5, 7)$	
	b.	Construct the following logic gates from NMOS and PMOS logic Families	5
		(i) NAND (ii) NOR	