Roll No: \square

BTECH

(SEM IV) THEORY EXAMINATION 2021-22
NETWORKS ANALYSIS \& SYNTHESIS
Time: 3 Hours
Total Marks: 100
Note: Attempt all Sections. If you require any missing data, then choose suitably.

SECTION A

1. Attempt all questions in brief.
$2 * 10=20$

Q.no.	Questions		CO
(a)	Write the properties of a Complete Incidence matrix.	1	
(b)	Describe the following: Tree, Co-Tree, Twig, Link, Cut-set and Tie set.	1	
(c)	In the given network, find the value of R so as to provide maximum power to the load of 3 ohm.		

SECTION B

2. Attempt any three of the following:

Qno	Questions	CO
	Draw the dual of the network in figure below:	
(a)		1

Roll No: \square

BTECH

(SEM IV) THEORY EXAMINATION 2021-22

NETWORKS ANALYSIS \& SYNTHESIS

	Obtain the Thevenin equivalent circuits at terminals xy of the network below:	
(b)	2	2
(c)	Find the voltage and current response of a series RL circuit when suddenly excited by a DC source.	3
(d)	Obtain the T-parameters in terms of hybrid parameters.	4
(e)	Find the 1 $1^{\text {st }}$ form of Foster for the following impedance function. $Z(s)=\frac{s\left(s^{2}+2\right)}{\left(s^{2}+1\right)\left(s^{2}+3\right)}$	5

SECTION C

3. Attempt any one part of the following:

Qno	Questions	CO
(a)	For the resistive network, write a cutset matrix and equilibrium equations on voltage basi's. Hence obtain values of branch voltages and branch currents.	1
(b)	For the network shown in the figure, draw the oriented graph and obtain the tie-set matrix. Use this matrix to calculate i.	1

Roll No: \square

BTECH

(SEM IV) THEORY EXAMINATION 2021-22
NETWORKS ANALYSIS \& SYNTHESIS
4. Attempt any one part of the following:
$10 * 1=10$

5. Attempt any one part of thefollowing:
$10 * 1=10$

| Qno | Questions | CO |
| :--- | :--- | :--- | :--- |
| (a) | The circuit in figure below is initially under steady-state condition. The
 switch is moved from position 1 to position 2 at $\mathrm{t}=0$. Find the current
 after switching. | 3 |
| (b) | The switch was in position S_{1} for a long time. Next, it is moved to
 position S_{2} at $t=0$. Calculate the voltage across the capacitor for $t>0$.
 Further, evaluate the time at which the capacitor voltage becomes zero. | 3 |

Roll No: \square

BTECH

(SEM IV) THEORY EXAMINATION 2021-22
NETWORKS ANALYSIS \& SYNTHESIS
25 V
6. Attempt any one part of the following:
$10 * 1=10$

Qno	Questions		
(a)	Find the Y parameters for the two-port network shown below:	4	

7. Attempt any one part of the following:

Qno	Questions	CO
(a)	Obtain both Cauer I and II realizations of the driving point function given by:	5
(b)	Check the positive realness of the following functions. i. $\frac{2 s+4}{s+5}$ ii. $\frac{s^{2}+2 s+4}{(s+3)(s+1)}$	5

