

Roll No:

BTECH

(SEM VI) THEORY EXAMINATION 2021-22

POWER ELECTRONICS

Time: 3 Hours

1.

Total Marks: 100

Note: Attempt all Sections. If you require any missing data, then choose suitably.

SECTION A

	Attempt <i>all</i> questions in brief. 2*10	
Qno	Questions	CO
(a)	What are di/dt and dv/dt ratings of SCRs? What happens if these ratings are exceeded?	1
(b)	Give the merits and demerits of a GTO as compared to a conventional SCR.	1
(c)	Explain the following current ratings of SCR (i) Average ON state current (ii) RMS ON state current	2
(d)	What are the different methods for turning off (Commutation) of an SCR? Draw the power circuit diagram of ClassC and D Commutation methods.	2
(e)	Explain the effect of freewheeling diode in power converters. Also, justify the statement "Freewheeling diode improves the power factor of the system".	3
(f)	Write the comparison between non-circulating current mode and circulating current mode of operation of Dual-Converters.	3.1
(g)	List the advantages and disadvantages of single-phase half-wave a.c. voltage controllers.	4
(h)	Distinguish between two-stage and multi-stage sequence control of a.c. voltagecontrollers. What are the advantages of multistage sequence control over two-stage sequencecontrol?	4
(i)	Explain Pulse Width Modulation (PWM)techniqueand advantages of SinusoidalPulse Width Modulation (SPWM) technique.	5
(j)	Compare the constructional and operational differences between voltage source and current-source inverters.	5

SECTION B

2. Attempt any *three* of the following:

10*3 = 30

1 AUUUII		
Qno	Questions	CO
(a)	Draw the turn-off characteristic of an SCR and explain the mechanism	1
	of turn-off in detail.	
(b)	A thyristor string is formed by the series and parallel connectionof	2
	thyristors. The voltage and current ratings of the string are 6 kV, and 4	
	kA respectively. Available thyristors have the voltage and current	
	ratings of 1.2 kV and 1 kA, respectively. The string efficiency is 90%	
	for both the series and parallel connections. Calculate thenumber of	
	thyristors to be connected in series and parallel.	
(c)	A single-phase fully-controlled bridge circuit shown in Fig. 1is used for	3
	obtaining a regulated d.c. output voltage. The RMS value of the a.c.	
	inputvoltage is 230 V, and the firing angle is maintained at $\pi/3$, so that	
	the load-currentis 4 A.	

Printed Page: 2 of 4 Subject Code: KEE603

BTECH (SEM VI) THEORY EXAMINATION 2021-22 **POWER ELECTRONICS**

SECTION C

3. fallowin ftho

Autum		
Qno	Questions	CO
(a)	Explain in detail the switching performance of BJT with relevant waveforms.	1
(b)	Latching current for an SCR inserted in between a DC voltage source of 200V and the load is 100 mA. Compute the minimum width of Gate Pulse current required to turn on this SCR in the case of load $R = 20 \Omega$ in series with L = 0.2 H.	1

Attempt any one part of the following: 4.

10 * 1 = 10Questions CO Qno With the help of a neat circuit diagram and associated waveforms, 2 (a) discuss theoperation of Buck converter.List the advantages of Buck-Boost converter over Buck and Boost converters. Consider the buck-boost converter of Fig. 2. The input voltageto this 2 (b) converter is $E_{dc} = 14$ V. The duty cycles $\alpha = 0.6$ and the switching frequency is 25kHz. The inductance L = 180 mH and filter capacitance C = 220 mF. The average loadcurrent $I_0 = 1.5 \text{ A}$.

10*1

10

Printed Page: 3 of 4

Roll No:

BTECH (SEM VI) THEORY EXAMINATION 2021-22 **POWER ELECTRONICS**

Atten	pt any <i>one</i> part of the following:	1 = 10
Qno	Questions	CO
(a)	Explain the operation of a three-phase, fully-controlled bridge converter with inductive load with the help of suitable voltage and current waveforms at $\alpha = 30^{\circ}$ and derive the expression for average load voltage.	3
(b)	Describe the working of single-phase fully-controlled bridge converter with Resistive-Inductive (RL) load (i) Supply voltage and current, (ii) Load voltage and current.	3

Attempt any one part of the following: 6.

Attem	pt any <i>one</i> part of the following: 10*	1 = 10
Qno	Questions	CO
(a)	A single-phase a.c.voltage controller of Fig. 3 feeds power to a resistive load of 4 Ω from 230 V, 50 Hz source.	4
	Fig. 3.	
	Determine and draw the suitable wave diagram of following:	
	(i) the RMS output voltage and current for any firing angle α	
	(ii) the peak values of average and RMS thyristor currents for any	
	firing angle α.	
	(iii) the minimum circuit turn-off time for any firing angle α .	
(b)	Describe the basic principle of working of a single-phase-to-single-	4
	phasestep down cycloconverter for abridge-type cycloconverter.	

Roll No:

BTECH

(SEM VI) THEORY EXAMINATION 2021-22

POWER ELECTRONICS

Atten	Attempt any <i>one</i> part of the following: 10	
Qno	Questions	CO
(a)	With the help of neat circuit diagram and waveforms, explain briefly	5
	the operation of three-phase bridge inverter with resistive inductive	
	(RL) load in 180° conduction mode.	
(b)	A single-phase half bridge inverter has R Load $R= 2$ ohm, and DC	5
	source voltage Vs/2=115V. Sketch the waveforms of following	
	(i) Output voltage	
	(ii) Output Current	
	(iii) Thyristor current and diode current	
	(iv) Power delivered to the load due to fundamental current	

E.P. 082	13.23A
0.22	~03·5·
2022 3:28.	
20.06	