

Roll No:

B.TECH (SEM- V) THEORY EXAMINATION 2021-22 HEAT AND MASS TRANSFER

Time: 3 Hours

Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

- 20 10

1.	Attempt all questions in brief.	2 x 10 =	= 20
Q no.	Question	Marks	CO
a.	What is the difference between thermodynamics and heat transfer?	2	1
b.	How the thermal conductivity of material is defined? What are its units?	2	1
c.	What is meant by transient heat conduction?	2	2
d.	Explain effectiveness and efficiency of fin.	2	2
e.	What is turbulent flow? Define it.	2	3
f.	Define Reynolds's number, also write the significance of Reynolds's number.	2	3
g.	Define Stefan Boltzmann's law.	2	4
h.	Explain black body, opaque body, white body and grey body also.	2	4
i.	How heat exchangers are classified?	2	5
j.	What are the various modes of mass transfer?	2	5

SECTION B

2. Attempt any *three* of the following:

<i>4</i> •			
Q no.	Question	Marks	CO
a.	Drive an expression for heat conduction through a composite wall.	10	1
b.	It is required to heat oil to about 300°C for frying purpose. A ladle is used in the frying. The section of the handle is 5 mm x 18 mm. the surroundings are at 30°C. The conductivity of the material is 205 W/m°C. If the temperature at a distance of 380 mm from the oil should not reach 40°C, Determine the convective heat transfer coefficient.		2
с.	Differentiate between:- (i) Natural and forced convection. (ii) Hydrodynamic and thermal boundary layer thickness.	10	3
d.	A 70 mm long circular surface of a circular hole of 35 mm diameter maintained at uniform temperature of 250°C. Find the loss of energy to the surroundings at 27°C, assuming the two ends of the hole to be as parallel discs and the metallic surfaces and surroundings have a black body characteristics.	10	4
e.	Derive an expression for effectiveness by NTU method for parallel flow.	10	5

ON C

3. Attempt any one part of the following:

5.	Attempt any one part of the following.		
Q no.	Question	Marks	CO
a.	Derive a general heat conduction equation for Cartesian co-ordinate. And also draw the temperature-thickness profile for it.	10	1
b.	A mild steel tank of thickness 12 mm contains water at 95°C. The thermal conductivity of mild steel is 50 W/m°C, and the heat transfer coefficients for the inside and outside the tank are 2850 and 10 W/m ² °C, respectively. If the atmospheric temperature is 15 °C, calculate: (i) The rate of heat loss per square meter of the tank surface area. (ii) The temperature of the outside surface of the tank.	10	1

Roll No:

4. Attempt any *one* part of the following:

	Attempt any <i>one</i> part of the following:		
Q no.	Question	Marks	CO
a.	An aluminium alloy plate of 400 mm x 400 mm x 4mm size at 200 °C is	10	2
	suddenly quenched into liquid oxygen at -183°C. Starting from		
	fundamentals or deriving the necessary expression to determine the time		
	required for the plate to reach a temperature of -70 °C. Assume h =		
	$20000 \text{ KJ/m}^2 \text{ h}^{\circ}\text{C}, c_p = 0.8 \text{ KJ/Kg}^{\circ}\text{C} \text{ and density} = 3000 \text{ Kg/m}^3.$		
b.	Prove that for a body whose thermal resistance is zero, the temperature	10	2
	required for cooling or heating can be obtained from the relation		
	$(t-t_a)/(t_i-t_a) = \exp[-B_i F_a]$		
	Where the symbols have their usual meanings.		
5.	Attempt any <i>one</i> part of the following:	-	
Q no.	Question	Marks	CO
a.	A nuclear reactor with its core constructed of parallel vertical plates of	10	3
	2.2 m high and 1.4 m wide has been designed on free convection heating		
	of liquid bismuth. The maximum temperature of the plate surface is		
	limited to 960°C while the lowest allowable temperature of the bismuth		
	is 340°C. Calculate the maximum possible heat dissipation from the both		
	sides of each plate. For the convection coefficient for the plate is		
	$Nu = 0.13 (Gr.Pr)^{0.333}$		
	Where different parameter are evaluated at the mean film temperature.		
b.	Air at 20°C flowing over a flat plate which is 200 mm wide and 500	10	3
	mm long. The plate is maintained at 100°C. Find the heat loss per		2
	hour from the plate f the air is flowing parallel to 500 mm side with 2		
	m/s velocity. What will be the effect on heat transfer if the flow is	3	٠
	parallel to 200 mm? The properties of air at $(100+20)/2 = 60^{\circ}$ C are v	\cap	
	parallel to 200 mm? The properties of air at $(100+20)/2 = 60^{\circ}$ C are v = 18.97 × 10 ⁻⁶ m ² /s, k = 0.025W/m°C and Pr = 0.7.		
6.		10	
6. Q no.	$= 18.97 \times 10^{-6} \text{ m}^2/\text{s}, \text{ k} = 0.025 \text{ W/m}^\circ\text{C} \text{ and } \text{Pr} = 0.7.$	Marks	СО
	$ \begin{array}{c} = 18.97 \times 10^{-6} \text{ m}^2/\text{s}, \text{k} = 0.025 \text{W/m}^\circ\text{C} \text{ and } \text{Pr} = 0.7. \\ \hline \text{Attempt any one part of the following:} \\ \hline & \text{Question} \end{array} $	Marks 10	CO 4
Q no.	$= 18.97 \times 10^{-6} \text{ m}^2/\text{s}, \text{ k} = 0.025 \text{ W/m}^\circ\text{C} \text{ and } \text{Pr} = 0.7.$ Attempt any <i>one</i> part of the following: Question Determine the radiant heat exchanger in W/ m ² between two large		
Q no.	$ \begin{array}{c} = 18.97 \times 10^{-6} \text{ m}^2/\text{s}, \text{ k} = 0.025 \text{W/m}^\circ\text{C} \text{ and } \text{Pr} = 0.7. \\ \hline \textbf{Attempt any one part of the following:} \\ \hline \textbf{Question} \\ \hline \textbf{Determine the radiant heat exchanger in W/m}^2 \text{ between two large parallel steel plates of emissivity's 0.8 and 0.5 held at temperature of } \end{array} $		
Q no.	$= 18.97 \times 10^{-6} \text{ m}^2/\text{s}, \text{ k} = 0.025 \text{W/m}^\circ\text{C} \text{ and } \text{Pr} = 0.7.$ Attempt any one part of the following: Question Determine the radiant heat exchanger in W/ m ² between two large parallel steel plates of emissivity's 0.8 and 0.5 held at temperature of 1000 k and 500k respectively, if a thin copper plate of emissivity 0.1 is		
Q no.	$ \begin{array}{c} = 18.97 \times 10^{-6} \text{ m}^2/\text{s}, \text{ k} = 0.025 \text{W/m}^\circ\text{C} \text{ and } \text{Pr} = 0.7. \\ \hline \textbf{Attempt any one part of the following:} \\ \hline \textbf{Question} \\ \hline \textbf{Determine the radiant heat exchanger in W/m}^2 \text{ between two large parallel steel plates of emissivity's 0.8 and 0.5 held at temperature of } \end{array} $		
Q no.	$= 18.97 \times 10^{-6} \text{ m}^2\text{/s}, \text{ k} = 0.025 \text{W/m}^\circ\text{C} \text{ and } \text{Pr} = 0.7.$ Attempt any one part of the following: Question Determine the radiant heat exchanger in W/ m ² between two large parallel steel plates of emissivity's 0.8 and 0.5 held at temperature of 1000 k and 500k respectively, if a thin copper plate of emissivity 0.1 is introduced as a radiation shield between the two plates. Use $\sigma =$		
Q no. a.	$= 18.97 \times 10^{-6} \text{ m}^2/\text{s}, \text{ k} = 0.025 \text{W/m}^\circ\text{C} \text{ and } \text{Pr} = 0.7.$ Attempt any one part of the following: Question Determine the radiant heat exchanger in W/ m ² between two large parallel steel plates of emissivity's 0.8 and 0.5 held at temperature of 1000 k and 500k respectively, if a thin copper plate of emissivity 0.1 is introduced as a radiation shield between the two plates. Use $\sigma = 5.67*10^{-8} \text{ W/m}^2\text{k}^4$	10	4
Q no. a.	$= 18.97 \times 10^{-6} \text{ m}^2/\text{s}, \text{ k} = 0.025 \text{W/m}^\circ\text{C} \text{ and } \text{Pr} = 0.7.$ Attempt any one part of the following: Question Determine the radiant heat exchanger in W/ m ² between two large parallel steel plates of emissivity's 0.8 and 0.5 held at temperature of 1000 k and 500k respectively, if a thin copper plate of emissivity 0.1 is introduced as a radiation shield between the two plates. Use $\sigma = 5.67*10^{-8} \text{ W/m}^2\text{k}^4$ Derive the expression for net heat exchange between black bodies for	10	4
Q no. a. b.	$= 18.97 \times 10^{-6} \text{ m}^2/\text{s}, \text{ k} = 0.025 \text{W/m}^\circ\text{C} \text{ and } \text{Pr} = 0.7.$ Attempt any one part of the following: Question Determine the radiant heat exchanger in W/ m ² between two large parallel steel plates of emissivity's 0.8 and 0.5 held at temperature of 1000 k and 500k respectively, if a thin copper plate of emissivity 0.1 is introduced as a radiation shield between the two plates. Use $\sigma = 5.67*10^{-8} \text{ W/m}^2\text{k}^4$ Derive the expression for net heat exchange between black bodies for infinite parallel planes.	10	4
Q no. a. b. 7.	= 18.97 × 10 ⁻⁶ m²/s, k = 0.025W/m°C and Pr = 0.7.Attempt any one part of the following:QuestionDetermine the radiant heat exchanger in W/ m² between two large parallel steel plates of emissivity's 0.8 and 0.5 held at temperature of 1000 k and 500k respectively, if a thin copper plate of emissivity 0.1 is introduced as a radiation shield between the two plates. Use $\sigma =$ $5.67*10^{-8}$ W/ m²k ⁴ Derive the expression for net heat exchange between black bodies for infinite parallel planes.Attempt any one part of the following:	10 10	4
Q no. a. b. 7. Q no.	= 18.97 × 10 ⁻⁶ m²/s, k = 0.025W/m°C and Pr = 0.7.Attempt any one part of the following:QuestionDetermine the radiant heat exchanger in W/ m² between two large parallel steel plates of emissivity's 0.8 and 0.5 held at temperature of 1000 k and 500k respectively, if a thin copper plate of emissivity 0.1 is introduced as a radiation shield between the two plates. Use σ = $5.67*10^{-8}$ W/ m²k ⁴ Derive the expression for net heat exchange between black bodies for infinite parallel planes.Attempt any one part of the following: QuestionQuestion	10 10 Marks	4 4 CO
Q no. a. b. 7. Q no.	= 18.97 × 10 ⁻⁶ m²/s, k = 0.025W/m°C and Pr = 0.7.Attempt any one part of the following:QuestionDetermine the radiant heat exchanger in W/ m² between two large parallel steel plates of emissivity's 0.8 and 0.5 held at temperature of 1000 k and 500k respectively, if a thin copper plate of emissivity 0.1 is introduced as a radiation shield between the two plates. Use σ = $5.67*10^{-8}$ W/ m²k ⁴ Derive the expression for net heat exchange between black bodies for infinite parallel planes.Attempt any one part of the following:QuestionThe flow rates of hot and cold water streams running through a parallel flow heat exchangers are 0.2 Kg/s and 0.5 Kg/s respectively the inlet a	10 10 Marks	4 4 CO
Q no. a. b. 7. Q no.	$= 18.97 \times 10^{-6} \text{ m}^2/\text{s}, \text{ k} = 0.025 \text{W/m}^\circ\text{C} \text{ and } \text{Pr} = 0.7.$ Attempt any <i>one</i> part of the following: Question Determine the radiant heat exchanger in W/ m ² between two large parallel steel plates of emissivity's 0.8 and 0.5 held at temperature of 1000 k and 500k respectively, if a thin copper plate of emissivity 0.1 is introduced as a radiation shield between the two plates. Use $\sigma = 5.67*10^{-8} \text{ W/m}^2\text{k}^4$ Derive the expression for net heat exchange between black bodies for infinite parallel planes. Attempt any <i>one</i> part of the following: Question The flow rates of hot and cold water streams running through a parallel flow heat exchangers are 0.2 Kg/s and 0.5 Kg/s respectively the inlet a temperatures 75°c and 20°c respectively. The exit temperature of hot	10 10 Marks	4 4 CO
Q no. a. b. 7. Q no.	$= 18.97 \times 10^{-6} \text{ m}^2/\text{s}, \text{ k} = 0.025 \text{W/m}^\circ\text{C} \text{ and } \text{Pr} = 0.7.$ Attempt any one part of the following: Question Determine the radiant heat exchanger in W/ m ² between two large parallel steel plates of emissivity's 0.8 and 0.5 held at temperature of 1000 k and 500k respectively, if a thin copper plate of emissivity 0.1 is introduced as a radiation shield between the two plates. Use $\sigma = 5.67*10^{-8} \text{ W/ m}^2\text{k}^4$ Derive the expression for net heat exchange between black bodies for infinite parallel planes. Attempt any one part of the following: Question The flow rates of hot and cold water streams running through a parallel flow heat exchangers are 0.2 Kg/s and 0.5 Kg/s respectively the inlet a temperatures 75°c and 20°c respectively. The exit temperature of hot water is 45°c. If the individual heat transfer coefficient on both sides are	10 10 Marks	4 4 CO
Q no. a. b. 7. Q no.	$= 18.97 \times 10^{-6} \text{ m}^2/\text{s}, \text{ k} = 0.025 \text{ W/m}^\circ \text{C} \text{ and } \text{Pr} = 0.7.$ Attempt any one part of the following: Question Determine the radiant heat exchanger in W/ m ² between two large parallel steel plates of emissivity's 0.8 and 0.5 held at temperature of 1000 k and 500k respectively, if a thin copper plate of emissivity 0.1 is introduced as a radiation shield between the two plates. Use $\sigma = 5.67*10^{-8} \text{ W/m}^2\text{k}^4$ Derive the expression for net heat exchange between black bodies for infinite parallel planes. Attempt any one part of the following: Question The flow rates of hot and cold water streams running through a parallel flow heat exchangers are 0.2 Kg/s and 0.5 Kg/s respectively the inlet a temperatures 75°c and 20°c respectively. The exit temperature of hot water is 45°c. If the individual heat transfer coefficient on both sides are 650 W/m ² °C. Calculate:	10 10 Marks	4 4 CO
Q no. a. b. 7. Q no.	= 18.97 × 10 ⁻⁶ m²/s, k = 0.025W/m°C and Pr = 0.7.Attempt any one part of the following:QuestionDetermine the radiant heat exchanger in W/ m² between two large parallel steel plates of emissivity's 0.8 and 0.5 held at temperature of 1000 k and 500k respectively, if a thin copper plate of emissivity 0.1 is introduced as a radiation shield between the two plates. Use $\sigma =$ $5.67*10^{-8}$ W/ m²k ⁴ Derive the expression for net heat exchange between black bodies for infinite parallel planes.Attempt any one part of the following: QuestionThe flow rates of hot and cold water streams running through a parallel flow heat exchangers are 0.2 Kg/s and 0.5 Kg/s respectively the inlet a temperatures 75°c and 20°c respectively. The exit temperature of hot water is 45°c. If the individual heat transfer coefficient on both sides are 650 W/m²°C. Calculate: (i) The area of heat exchanger.	10 10 Marks	4 4 CO
Q no. a. b. 7. Q no.	$= 18.97 \times 10^{-6} \text{ m}^2/\text{s}, \text{ k} = 0.025 \text{ W/m}^\circ \text{C} \text{ and } \text{Pr} = 0.7.$ Attempt any one part of the following: Question Determine the radiant heat exchanger in W/ m ² between two large parallel steel plates of emissivity's 0.8 and 0.5 held at temperature of 1000 k and 500k respectively, if a thin copper plate of emissivity 0.1 is introduced as a radiation shield between the two plates. Use $\sigma = 5.67*10^{-8} \text{ W/m}^2\text{k}^4$ Derive the expression for net heat exchange between black bodies for infinite parallel planes. Attempt any one part of the following: Question The flow rates of hot and cold water streams running through a parallel flow heat exchangers are 0.2 Kg/s and 0.5 Kg/s respectively the inlet a temperatures 75°c and 20°c respectively. The exit temperature of hot water is 45°c. If the individual heat transfer coefficient on both sides are 650 W/m ² °C. Calculate:	10 10 Marks	4 4 CO